Center for Biomolecular and Tissue Engineering Center for Biomolecular and Tissue Engineering
Pratt School of Engineering
Duke University

 HOME > pratt > CBTE    Search Help Login pdf version printable version 

Publications [#161930] of Roger C. Barr

Papers Published

  1. B. J. Mossop and R. C. Barr and J. W. Henshaw and F. Yuan, Electric fields around and within single cells during electroporation - A model study, Annals Of Biomedical Engineering, vol. 35 no. 7 (July, 2007), pp. 1264 -- 1275, ISSN 0090-6964
    (last updated on 2009/09/02)

    One of the key issues in electric field-mediated molecular delivery into cells is how the intracellular field is altered by electroporation. Therefore, we simulated the electric field in both the extracellular and intracellular domains of spherical cells during electroporation. The electroporated membrane was modeled macroscopically by assuming that its electric resistivity was smaller than that of the intact membrane. The size of the electroporated region on the membrane varied from zero to the entire surface of the cell. We observed that for a range of values of model constants, the intracellular current could vary several orders of magnitude whereas the maximum variations in the extracellular and total currents were less than 8\% and 4\%, respectively. A similar difference in the variations was observed when comparing the electric fields near the center of the cell and across the permeabilized membrane, respectively. Electroporation also caused redirection of the extracellular field that was significant only within a small volume in the vicinity of the permeabilized regions, suggesting that the electric field can only facilitate passive cellular uptake of charged molecules near the pores. Within the cell, the field was directed radially from the permeabilized regions, which may be important for improving intracellular distribution of charged molecules.

Duke University * Pratt * CBTE * Reload * Login