Center for Biomolecular and Tissue Engineering Center for Biomolecular and Tissue Engineering
Pratt School of Engineering
Duke University

 HOME > pratt > CBTE    Search Help Login pdf version printable version 

Publications [#162152] of Lori A. Setton

Papers Published

  1. D. W. Lim and D. L. Nettles and L. A. Setton and A. Chilkoti, Rapid cross-linking of elastin-like polypeptides with (hydroxymethyl)phosphines in aqueous solution, Biomacromolecules, vol. 8 no. 5 (May, 2007), pp. 1463 -- 1470, ISSN 1525-7797
    (last updated on 2009/09/02)

    Abstract:
    In situ gelation of injectable polypeptide-based materials is attractive for minimally invasive in vivo implantation of biomaterials and tissue engineering scaffolds. We demonstrate that chemically cross-linked elastin-like polypeptide (ELP) hydrogels can be rapidly formed in aqueous solution by reacting lysine-containing ELPs with an organophosphorous cross-linker, beta-[tris(hydroxymethyl)phosphino]propionic acid (THPP) under physiological conditions. The mechanical properties of the cross-linked ELP hydrogels were largely modulated by the molar concentration of lysine residues in the ELP and the pH at which the cross-linking reaction was carried out. Fibroblasts embedded in ELP hydrogels survived the cross-linking process and were viable after in vitro culture for 3 days. DNA quantification of ELP hydrogels with encapsulated fibroblasts indicated that there was no significant difference in DNA content between day 0 and day 3 when ELP hydrogels were formed with an equimolar ratio of THPP and lysine residues of the ELPs. These results suggest that THPP cross-linking may be a biocompatible strategy for the in situ formation of cross-linked hydrogels.


Duke University * Pratt * CBTE * Reload * Login