Fitzpatrick Institute for Photonics Fitzpatrick Institute for Photonics
Pratt School of Engineering
Duke University

 HOME > pratt > FIP    Search Help Login pdf version printable version 

Publications [#113175] of Harold P. Erickson

Papers Published

  1. K Yokoyama, HP Erickson, Y Ikeda, Y Takada, Identification of amino acid sequences in fibrinogen gamma -chain and tenascin C C-terminal domains critical for binding to integrin alpha vbeta 3., The Journal of biological chemistry, UNITED STATES, vol. 275 no. 22 (June, 2000), pp. 16891-8, ISSN 0021-9258
    (last updated on 2009/02/12)

    Abstract:
    Integrin alpha(v)beta(3) recognizes fibrinogen gamma and alpha(E) chain C-terminal domains (gammaC and alpha(E)C) but does not require the gammaC dodecapeptide sequence HHLGGAKQAGDV(400-411) for binding to gammaC. We have localized the alpha(v)beta(3) binding sites in gammaC using gammaC-derived synthetic peptides. We found that two peptides GWTVFQKRLDGSV(190-202) and GVYYQGGTYSKAS(346-358) block the alpha(v)beta(3) binding to gammaC or alpha(E)C, block the alpha(v)beta(3)-mediated clot retraction, and induce the ligand-induced binding site 2 (LIBS2) epitope in alpha(v)beta(3). Neither peptide affects fibrinogen binding to alpha(IIb)beta(3). Scrambled or inverted peptides were not effective. These results suggest that the two gammaC-derived peptides directly interact with alpha(v)beta(3) and specifically block alpha(v)beta(3)-gammaC or alpha(E)C interaction. The two sequences are located next to each other in the gammaC crystal structure, although they are separate in the primary structure. Asp-199, Ser-201, Gln-350, Thr-353, Lys-356, Ala-357, and Ser-358 residues are exposed to the surface. This suggests that the two sequences are part of alpha(v)beta(3) binding sites in fibrinogen gammaC domain. We also found that tenascin C C-terminal fibrinogen-like domain specifically binds to alpha(v)beta(3). Notably, a peptide WYRNCHRVNLMGRYGDNNHSQGVNWFHWKG from this domain that includes the sequence corresponding to gammaC GVYYQGGTYSKAS(346-358) specifically binds to alpha(v)beta(3), suggesting that fibrinogen and tenascin C C-terminal domains interact with alpha(v)beta(3) in a similar manner.

    Keywords:
    Amino Acid Sequence • Animals • CHO Cells • Cells, Cultured • Cricetinae • Fibrinogen • Humans • Models, Molecular • Molecular Sequence Data • Protein Binding • Protein Conformation • Receptors, Vitronectin • Recombinant Proteins • Tenascin • chemistry • metabolism • metabolism*


Duke University * Pratt * Reload * Login