Papers Published

  1. Tran-Son-Tay, R. and Kirk, T.F., III and Zhelev, D.V. and Hochmuth, R.M., Numerical simulation of the flow of highly viscous drops down a tapered tube, Trans. ASME, J. Biomech. Eng. (USA), vol. 116 no. 2 (1994), pp. 172 - 7 .
    (last updated on 2007/04/10)

    Abstract:
    The flow of a highly viscous drop surrounded by an inviscid fluid inside a tapered tube is analyzed according to a Newtonian, liquid-drop model in which a variational method is used to simultaneously solve the hydrodynamic equations for low Reynolds-number flow and the equations for membrane equilibrium with a constant membrane tension. It is found that the flow in the end caps is plug and radial in the conical section of the drop. The results are compared to a simplified analytical theory that makes these assumptions. Very good agreement is found between the two approaches. Both approaches are used to analyze existing experimental results of passive neutrophils flowing down a tapered tube. The theoretical models give a good fit to published experimental data by Bagge et al. (1977) at driving pressures of 20 and 40 mm H2O for a membrane cortical tension of 0.024 dyn/cm and an apparent cytoplasmic viscosity of about 2400 and 1400 poise, respectively

    Keywords:
    biorheology;physiological models;