Papers Published

  1. Setton, L.A. and Tohyama, H. and Mow, V.C., Swelling and curling behaviors of articular cartilage, Trans. ASME, J. Biomech. Eng. (USA), vol. 120 no. 3 (1998), pp. 355 - 61 .
    (last updated on 2007/04/10)

    A new experimental method was developed to quantify parameters of swelling-induced shape change in articular cartilage. Full-thickness strips of cartilage were studied in free-swelling tests and the swelling-induced stretch, curvature, and areal change were measured. In general, swelling-induced stretch and curvature were found to increase in cartilage with decreasing ion concentration, reflecting an increasing tendency to swell and “curl” at higher swelling pressures. An exception was observed at the articular surface, which was inextensible for all ionic conditions. The swelling induced residual strain at physiological ionic conditions was estimated from the swelling-induced stretch and found to be tensile and from 3-15 percent. Parameters of swelling were found to vary with sample orientation, reflecting a role for matrix anisotropy in controlling the swelling-induced residual strains. In addition, the surface zone was found to be a structurally important element, which greatly limits swelling of the entire cartilage layer. The findings of this study provide the first quantitative measures of swelling-induced residual strain in cartilage ex situ, and may be readily adapted to studies of cartilage swelling in situ