Pei Zhong, Professor  


Pei Zhong

My research focuses on four broad and interconnected areas in the emerging field of therapeutic ultrasound, which is located at the interface of engineering, biology and clinical medicine. Current research interests in my group include:

  1. Ultrasound-targeted gene delivery and activation
  2. Synergistic combination of high-intensity focused ultrasound (HIFU) and immunotherapy for cancer treatment
  3. Innovations in shock wave lithotripsy (SWL) technology
  4. Mechanics and bioeffects of acoustic cavitation.

We are taking an integrated and translational approach that combines fundamental research with engineering and applied technology development to devise novel and enabling ultrasonic techniques for a variety of clinical applications. Our fundamental research focuses on achieving a mechanistic understanding of the stress response of biological cells and tissues induced by ultrasound exposure. Based on this knowledge, we develop better instrumentation and treatment strategies for ultrasound-targeted gene delivery and activation in internal organs, for improving the overall efficacy of HIFU therapy for breast and prostate cancers, and for SWL treatment of renal calculi. A long-standing research effort in my laboratory is to understand the dynamics and biological consequences of the interaction of optically or acoustically generated cavitation bubble(s) with shock waves near a boundary or in constrained media. We employ a diverse range of experimental techniques including high-speed Schlieren and photoelastic imaging, pressure measurement via fiber optical probe hydrophone, as well as cell, phantom and animal models. Our research activities are primarily supported by NIH and through collaborations with the medical device industry.

Contact Info:
Office Location:  1103 Engineering Annex
Office Phone:  (919) 660-5336
Email Address:   send me a message
Web Page:

Education:

PhD, University of Texas, Southwestern, 1992
MS, University of Texas, Arlington, 1988
BS, HuaZhong University of Science and Technology, 1985
Research Interests:

Ultrasound-targeted gene delivery and activation; Synergistic combination of high-intensity focused ultrasound (HIFU) and immunotherapy for cancer treatment; Innovations in shock wave lithotripsy (SWL) technology; and Mechanics and bioeffects of acoustic cavitation.

Specialties:

Acoustics
Lithotripsy
Fluid Mechanics
Medical Instrumentation
Cancer Diagnostics and Therapy
Awards, Honors, and Distinctions

Searle New Investigator Research Award, American Foundation for Urological Disease, 1994-1996
Young Investigator Award, VIII International Symposium on Urolithiasis, 1996
Teaching (Fall 2014):

  • ME 555.02, ADVANCED TOPICS Synopsis
    SEE INSTRU, TuTh 10:05 AM-11:20 AM
Representative Publications   (More Publications)

  1. Z. Hu and X. Y. Yang and Y. Liu and G. N. Sankin and E. C. Pua and M. A. Morse and H. K. Lyerly and T. M. Clay and P. Zhong, Investigation of HIFU-induced anti-tumor immunity in a murine tumor model, Journal Of Translational Medicine, vol. 5 (July, 2007) .
  2. J. I. Iloreta and Y. F. Zhou and G. N. Sankin and P. Zhong and A. J. Szeri, Assessment of shock wave lithotripters via cavitation potential, Physics Of Fluids, vol. 19 no. 8 (August, 2007) .
  3. E. Klaseboer and S. W. Fong and C. K. Turangan and B. C. Khoo and A. J. Szeri and M. L. Calvisi and G. N. Sankin and P. Zhong, Interaction of lithotripter shockwaves with single inertial cavitation bubbles, Journal Of Fluid Mechanics, vol. 593 (December, 2007), pp. 33 -- 56 .
  4. G. N. Sankin and P. Zhong, Interaction between shock wave and single inertial bubbles near an elastic boundary, Physical Review E, vol. 74 no. 4 (October, 2006) .
  5. Y. F. Zhou and L. Zhai and R. Simmons and P. Zhong, Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone, Journal Of The Acoustical Society Of America, vol. 120 no. 2 (August, 2006), pp. 676 -- 685 .
  6. Y. B. Liu and T. Kon and C. Y. Li and P. Zhong, High intensity focused ultrasound-induced gene activation in solid tumors, Journal Of The Acoustical Society Of America, vol. 120 no. 1 (July, 2006), pp. 492 -- 501 .
  7. G. N. Sankin and W. N. Simmons and S. L. Zhu and P. Zhong, Shock wave interaction with laser-generated single bubbles, Physical Review Letters, vol. 95 no. 3 (July, 2005) .
  8. Z. L. Hu and X. Y. Yang and Y. B. Liu and M. A. Morse and H. K. Lyerly and T. M. Clay and P. Zhong, Release of endogenous danger signals from HIFU-treated tumor cells and their stimulatory effects on APCs, Biochemical And Biophysical Research Communications, vol. 335 no. 1 (September, 2005), pp. 124 -- 131 .
  9. Y. F. Zhou and F. H. Cocks and G. M. Preminger and P. Zhong, Innovations in shock wave lithotripsy technology: Updates in experimental studies, Journal Of Urology, vol. 172 no. 5 (November, 2004), pp. 1892 -- 1898 .
  10. W. S. Chen and X. C. Lu and Y. B. Liu and P. Zhong, The effect of surface agitation on ultrasound-mediated gene transfer in vitro, Journal Of The Acoustical Society Of America, vol. 116 no. 4 (October, 2004), pp. 2440 -- 2450 .
  11. Y. F. Zhou and P. Zhong, Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: Refinement of reflector geometry, Journal Of The Acoustical Society Of America, vol. 113 no. 1 (January, 2003), pp. 586 -- 597 .
  12. X. F. Xi and P. Zhong, Dynamic photoelastic study of the transient stress field in solids during shock wave lithotripsy, Journal Of The Acoustical Society Of America, vol. 109 no. 3 (March, 2001), pp. 1226 -- 1239 .
  13. P. Zhong and Y. F. Zhou and S. L. Zhu, Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL, Ultrasound In Medicine And Biology, vol. 27 no. 1 (January, 2001), pp. 119 -- 134 .