Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke





.......................

.......................


Publications of David G. Schaeffer    :recent first  alphabetical  combined  bibtex listing:

Books

  1. Golubitsky, Martin and Schaeffer, David G., Singularities and groups in bifurcation theory. Vol. I, pp. xvii+463, 1985, Springer-Verlag, New York [MR86e:58014]
  2. Golubitsky, Martin and Stewart, Ian and Schaeffer, David G., Singularities and groups in bifurcation theory. Vol. II, pp. xvi+533, 1988, Springer-Verlag, New York [MR89m:58038]
  3. Two phase flows and waves, edited by Joseph, Daniel D. and Schaeffer, David G., pp. xii+164, 1990, Springer-Verlag, New York [MR91e:76008]

Papers Published

  1. Schaeffer, David G., The Dirichlet problem with generalized functions as data, Ann. Mat. Pura Appl. (4), vol. 83, pp. 153--174, 1969 [MR41:7271]
  2. Schaeffer, David G., A note on the representation of a solution of an elliptic differential equation near an isolated singularity, Proc. amer. Math. Soc., vol. 23, pp. 450--454, 1969 [MR39:7262]
  3. Schaeffer, David G., Wiener-Hopf factorization of the symbol of an elliptic difference operator, J. Functional Analysis, vol. 5, pp. 383--394, 1970 [MR41:7491]
  4. Schaeffer, David G., An extension of Hartogs' theorem for domains whose boundary is not smooth, Proc. Amer. Math. Soc., vol. 25, pp. 714--715, 1970 [MR41:5650]
  5. Coburn, L. A. and Douglas, R. G. and Schaeffer, D. G. and Singer, I. M., $C\sp{\ast} $-algebras of operators on a half-space. II. Index theory, Inst. Hautes \'Etudes Sci. Publ. Math., no. 40, pp. 69--79, 1971 [MR50:10884]
  6. Schaeffer, David G., Approximation of the Dirichlet problem on a half space, Acta Math., vol. 129, no. 3--4, pp. 281--295, 1972 [MR52:16058]
  7. Schaeffer, David G., An application of von Neumann algebras to finite difference equations, Ann. of Math. (2), vol. 95, pp. 117--129, 1972 [MR45:5563]
  8. Guillemin, V. and Schaeffer, D., Remarks on a paper of D. Ludwig, Bull. Amer. Math. Soc., vol. 79, pp. 382--385, 1973 [MR53:13800]
  9. Schaeffer, David G., An application of von Neumann algebras to finite difference equations, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), pp. 183--194, 1973, Amer. Math. Soc., Providence, R.I. [MR49:838]
  10. Schaeffer, David G., A regularity theorem for conservation laws, Advances in Math., vol. 11, pp. 368--386, 1973 [MR48:4523]
  11. Schaeffer, David G., An index theorem for systems of difference operators on a half space, Inst. Hautes \'Etudes Sci. Publ. Math., no. 42, pp. 121--127, 1973 [MR47:9341]
  12. Schaeffer, David G., The capacitor problem, Indiana Univ. Math. J., vol. 24, no. 12, pp. 1143--1167, 1974/75 [MR52:14607]
  13. Schaeffer, David G., Singularities and the obstacle problem, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Stanford Univ., Stanford, Calif., 1973), Part 2, pp. 339--340, 1975, Amer. Math. Soc., Providence, R.I. [MR57:10227]
  14. Schaeffer, David G., On the existence of discrete frequencies of oscillation in a rotating fluid, Studies in Appl. Math., vol. 54, no. 3, pp. 269--274, 1975 [MR56:10385]
  15. Schaeffer, David G., An example of generic regularity for a non-linear elliptic equation, Arch. Rational Mech. Anal., vol. 57, pp. 134--141, 1975 [MR52:8649]
  16. Guillemin, V. and Schaeffer, D., Fourier integral operators from the Radon transform point of view, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Stanford Univ., Stanford, Calif., 1973), Part 2, pp. 297--300, 1975, Amer. Math. Soc., Providence, R.I. [MR52:1420]
  17. Schaeffer, David G., A stability theorem for the obstacle problem, Advances in Math., vol. 17, no. 1, pp. 34--47, 1975 [MR52:994]
  18. Golubitsky, Martin and Schaeffer, David G., Stability of shock waves for a single conservation law, Advances in Math., vol. 16, pp. 65--71, 1975 [MR51:10889]
  19. Schaeffer, David G., Supersonic flow past a nearly straight wedge, Duke Math. J., vol. 43, no. 3, pp. 637--670, 1976 [MR54:1850]
  20. Schaeffer, David G., A new proof of the infinite differentiability of the free boundary in the Stefan problem, J. Differential Equations, vol. 20, no. 1, pp. 266--269, 1976 [MR52:11325]
  21. Schaeffer, David G., Non-uniqueness in the equilibrium shape of a confined plasma, Comm. Partial Differential Equations, vol. 2, no. 6, pp. 587--600, 1977 [MR58:29210]
  22. Schaeffer, David G., Some examples of singularities in a free boundary, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), vol. 4, no. 1, pp. 133--144, 1977 [MR58:24345]
  23. Schaeffer, David G., One-sided estimates for the curvature of the free boundary in the obstacle problem, Advances in Math., vol. 24, no. 1, pp. 78--98, 1977 [MR56:6506]
  24. Guillemin, Victor and Schaeffer, David, On a certain class of Fuchsian partial differential equations, Duke Math. J., vol. 44, no. 1, pp. 157--199, 1977 [MR55:3504]
  25. Schaeffer, David G., An application of the Nash-Moser theorem to a free boundary problem, Nonlinear partial differential equations and applications (Proc. Special Sem., Indiana Univ., Bloomington, Ind., 1976-1977), pp. 129--143, 1978, Springer, Berlin [MR80c:35067]
  26. Schaeffer, David and Golubitsky, Martin, Boundary conditions and mode jumping in the buckling of a rectangular plate, Comm. Math. Phys., vol. 69, no. 3, pp. 209--236, 1979 [MR81k:35019]
  27. Golubitsky, M. and Schaeffer, D., An analysis of imperfect bifurcation, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977), pp. 127--133, 1979, New York Acad. Sci., New York [MR81c:58027]
  28. Golubitsky, M. and Schaeffer, D., A theory for imperfect bifurcation via singularity theory, Comm. Pure Appl. Math., vol. 32, no. 1, pp. 21--98, 1979 [MR80j:58061]
  29. Golubitsky, M. and Schaeffer, D., Imperfect bifurcation in the presence of symmetry, Comm. Math. Phys., vol. 67, no. 3, pp. 205--232, 1979 [MR80j:58017]
  30. Schaeffer, David G. and Golubitsky, Martin A., Bifurcation analysis near a double eigenvalue of a model chemical reaction, Arch. Rational Mech. Anal., vol. 75, no. 4, pp. 315--347, 1980/81 [MR83b:80010]
  31. Golubitsky, Martin and Keyfitz, Barbara L. and Schaeffer, David, A singularity theory approach to qualitative behavior of complex chemical systems, New approaches to nonlinear problems in dynamics (Proc. Conf., Pacific Grove, Calif., 1979), pp. 257--270, 1980, SIAM, Philadelphia, Pa. [MR82i:80011]
  32. Golubitsky, Martin and Schaeffer, David, A singularity theory approach to steady-state bifurcation theory, Nonlinear partial differential equations in engineering and applied science (Proc. Conf., Univ. Rhode Island, Kingston, R.I., 1979), pp. 229--254, 1980, Dekker, New York [MR82a:58018]
  33. Golubitsky, Martin and Schaeffer, David, A qualitative approach to steady-state bifurcation theory, New approaches to nonlinear problems in dynamics (Proc. Conf., Pacific Grove, Calif., 1979), pp. 43--51, 1980, SIAM, Philadelphia, Pa. [MR81k:58026]
  34. Schaeffer, David G., Qualitative analysis of a model for boundary effects in the Taylor problem, Math. Proc. Cambridge Philos. Soc., vol. 87, no. 2, pp. 307--337, 1980 [MR81c:35007]
  35. Schaeffer, David, General introduction to steady state bifurcation, Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), pp. 13--47, 1981, Springer, Berlin [MR83j:58037]
  36. Golubitsky, Martin and Keyfitz, Barbara Lee and Schaeffer, David G., A singularity theory analysis of a thermal-chainbranching model for the explosion peninsula, Comm. Pure Appl. Math., vol. 34, no. 4, pp. 433--463, 1981 [MR82h:58010]
  37. Golubitsky, Martin and Schaeffer, David, Bifurcations with ${\rm O}(3)$\ symmetry including applications to the B\'enard problem, Comm. Pure Appl. Math., vol. 35, no. 1, pp. 81--111, 1982 [MR83b:58026]
  38. Schaeffer, David G., Topics in bifurcation theory, Systems of nonlinear partial differential equations (Oxford, 1982), pp. 219--262, 1983, Reidel, Dordrecht [MR85e:58107]
  39. Golubitsky, Martin and Schaeffer, David, A discussion of symmetry and symmetry breaking, Singularities, Part 1 (Arcata, Calif., 1981), pp. 499--515, 1983, Amer. Math. Soc., Providence, RI [MR85b:58018]
  40. Ball, J. M. and Schaeffer, D. G., Bifurcation and stability of homogeneous equilibrium configurations of an elastic body under dead-load tractions, Math. Proc. Cambridge Philos. Soc., vol. 94, no. 2, pp. 315--339, 1983 [MR84k:73033]
  41. Golubitsky, M. and Marsden, J. and Schaeffer, D., Bifurcation problems with hidden symmetries, Partial differential equations and dynamical systems, pp. 181--210, 1984, Pitman, Boston, MA [MR86a:58020]
  42. Holder, E. J. and Schaeffer, D., Boundary conditions and mode jumping in the von K\'arm\'an equations, SIAM J. Math. Anal., vol. 15, no. 3, pp. 446--458, 1984 [MR85m:73029]
  43. Schaeffer, David G. and Shearer, Michael, Three phase flow in a porous medium and the classification of nonstrictly hyperbolic conservation laws, International workshop on applied differential equations (Beijing, 1985), pp. 154--162, 1986, World Sci. Publishing, Singapore [MR89c:35100]
  44. Shearer, Michael and Schaeffer, David G., Three-phase flow in a porous medium and the classification of non-strictly hyperbolic conservation laws, Transactions of the third Army conference on applied mathematics and computing (Atlanta, Ga., 1985), pp. 509--517, 1986, U.S. Army Res. Office, Research Triangle Park, NC [MR87j:76093]
  45. Schaeffer, David G., Instability in the flow of granular materials, Mathematics applied to fluid mechanics and stability (Troy, N.Y., 1985), pp. 274, 1986, SIAM, Philadelphia, PA [MR869642]
  46. Schaeffer, David G. and Shearer, Michael, Riemann problems for nonstrictly hyperbolic $2\times 2$ systems of conservation laws, Trans. Amer. Math. Soc., vol. 304, no. 1, pp. 267--306, 1987 [MR88m:35101]
  47. Pitman, E. Bruce and Schaeffer, David G., Stability of time dependent compressible granular flow in two dimensions, Comm. Pure Appl. Math., vol. 40, no. 4, pp. 421--447, 1987 [MR88i:35170]
  48. Schaeffer, David G., Instability in the evolution equations describing incompressible granular flow, J. Differential Equations, vol. 66, no. 1, pp. 19--50, 1987 [MR88i:35169]
  49. Shearer, M. and Schaeffer, D. G. and Marchesin, D. and Paes-Leme, P. L., Solution of the Riemann problem for a prototype $2\times 2$ system of nonstrictly hyperbolic conservation laws, Arch. Rational Mech. Anal., vol. 97, no. 4, pp. 299--320, 1987 [MR88a:35156]
  50. Schaeffer, David G. and Shearer, Michael, The classification of $2\times 2$ systems of nonstrictly hyperbolic conservation laws, with application to oil recovery, Comm. Pure Appl. Math., vol. 40, no. 2, pp. 141--178, 1987 [MR88a:35155]
  51. Shearer, Michael and Schaeffer, David G., Recent developments in nonstrictly hyperbolic conservation laws, Transactions of the fourth Army conference on applied mathematics and computing (Ithaca, N.Y., 1986), pp. 43--52, 1987, U.S. Army Res. Office, Research Triangle Park, NC [MR905075]
  52. Schaeffer, David G. and Pitman, E. Bruce, Ill-posedness in three-dimensional plastic flow, Comm. Pure Appl. Math., vol. 41, no. 7, pp. 879--890, 1988 [MR89m:73018]
  53. Beale, J. Thomas and Schaeffer, David G., Nonlinear behavior of model equations which are linearly ill-posed, Comm. Partial Differential Equations, vol. 13, no. 4, pp. 423--467, 1988 [MR89h:35329]
  54. Shearer, Michael and Schaeffer, David G., The quasidynamic approximation in critical state plasticity, Arch. Rational Mech. Anal., vol. 108, no. 3, pp. 267--280, 1989 [MR91d:73031]
  55. Pitman, E. Bruce and Schaeffer, David G., Instability and ill-posedness in granular flow, Current progress in hyberbolic systems: Riemann problems and computations (Brunswick, ME, 1988), pp. 241--250, 1989, Amer. Math. Soc., Providence, RI [MR90k:73037]
  56. Schaeffer, David G. and Shearer, Michael, Loss of hyperbolicity in yield vertex plasticity models under nonproportional loading, Nonlinear evolution equations that change type, pp. 192--217, 1990, Springer, New York [MR92f:73022]
  57. Schaeffer, David G., Mathematical issues in the continuum formulation of slow granular flow, Two phase flows and waves (Minneapolis, MN, 1989), pp. 118--129, 1990, Springer, New York [MR91f:73014]
  58. Schaeffer, David G., Instability and ill-posedness in the deformation of granular materials, Internat. J. Numer. Anal. Methods Geomech., vol. 14, no. 4, pp. 253--278, 1990 [MR91e:73071]
  59. Schaeffer, David G. and Shearer, Michael and Pitman, E. Bruce, Instability in critical state theories of granular flow, SIAM J. Appl. Math., vol. 50, no. 1, pp. 33--47, 1990 [MR90k:73044]
  60. Schaeffer, David G., A mathematical model for localization in granular flow, Proc. Roy. Soc. London Ser. A, vol. 436, no. 1897, pp. 217--250, 1992 [MR93g:73061]
  61. Schaeffer, David G. and Shearer, Michael, Scale-invariant initial value problems in one-dimensional dynamic elastoplasticity, with consequences for multidimensional nonassociative plasticity, European J. Appl. Math., vol. 3, no. 3, pp. 225--254, 1992 [MR93g:73057]
  62. An, Lian Jun and Schaeffer, David G., The flutter instability in granular flow, J. Mech. Phys. Solids, vol. 40, no. 3, pp. 683--698, 1992 [MR93c:73053]
  63. Wang, Feng and Gardner, Carl L. and Schaeffer, David G., Steady-state computations of granular flow in an axisymmetric hopper, SIAM J. Appl. Math., vol. 52, no. 4, pp. 1076--1088, 1992 [MR93c:73040]
  64. Shearer, Michael and Schaeffer, David G., The initial value problem for a system modelling unidirectional longitudinal elastic-plastic waves, SIAM J. Math. Anal., vol. 24, no. 5, pp. 1111--1144, 1993 [MR95f:73038]
  65. Schaeffer, David G. and Shearer, Michael, Unloading near a shear band: a free boundary problem for the wave equation, Comm. Partial Differential Equations, vol. 18, no. 7-8, pp. 1271--1298, 1993 [MR94i:35203]
  66. Schaeffer, David G. and Schecter, Stephen and Shearer, Michael, Non-strictly hyperbolic conservation laws with a parabolic line, J. Differential Equations, vol. 103, no. 1, pp. 94--126, 1993 [MR94d:35102]
  67. Garaizar, F. Xabier and Schaeffer, David G., Numerical computations for shear bands in an antiplane shear model, J. Mech. Phys. Solids, vol. 42, no. 1, pp. 21--50, 1994 [MR94j:73029]
  68. Gardner, Carl L. and Schaeffer, David G., Numerical simulation of uniaxial compression of a granular material with wall friction, SIAM J. Appl. Math., vol. 54, no. 6, pp. 1676--1692, 1994 [MR95g:76010]
  69. Shearer, Michael and Schaeffer, David G., Unloading near a shear band in granular material, Quart. Appl. Math., vol. 52, no. 3, pp. 579--600, 1994 [MR95m:73030]
  70. F.X. Garzizar, David G Schaeffer, M. Shearer, J. Trangenstein, Formation and Development of Shear Bands in Granular Material, Trans. of 11th Army Conf. on Appl. Math. & Computing.
  71. Shearer, Michael and Schaeffer, David G., Fully nonlinear hyperbolic systems of partial differential equations related to plasticity, Comm. Partial Differential Equations, vol. 20, no. 7-8, pp. 1133--1153, 1995 [MR96b:35134]
  72. Shearer, Michael and Schaeffer, David G., A class of fully nonlinear $2\times 2$ systems of partial differential equations, Comm. Partial Differential Equations, vol. 20, no. 7-8, pp. 1105--1131, 1995 [MR96b:35133]
  73. David G Schaeffer, Memoirs From a Small-Scale Course On Industrial Math, Notices AMS, 43(1996), 550-557.
  74. Shearer, Michael and Schaeffer, David G., Riemann problems for $5\times 5$ systems of fully non-linear equations related to hypoplasticity, Math. Methods Appl. Sci., vol. 19, no. 18, pp. 1433--1444, 1996 [MR97m:73028]
  75. Schaeffer, David G., A survey of granular flow, Hyperbolic problems: theory, numerics, applications (Stony Brook, NY, 1994), pp. 63--80, 1996, World Sci. Publishing, River Edge, NJ [MR1446015]
  76. M. K. Gordon, David G Schaeffer, M. Shearer, Plane Shear Waves in a Fully Saturated Granular Medium with Velocity-and Stress-Controlled Boundary Conditions, Int. J. Nonlinear Mechancis 32(1997), 489-503.
  77. David G Schaeffer, M. Shearer, Models of Stress Fluctuations in Granular Materials, Powders and Grains, R.P. Behringer and J. Jenkins (eds.), Balkema, 1997.
  78. Schaeffer, David G. and Shearer, Michael, The influence of material non-uniformity preceding shear-band formation in a model for granular flow, European J. Appl. Math., vol. 8, no. 5, pp. 457--483, 1997 [MR98g:73016]
  79. David G Schaeffer, M. Shearer, A Simple Model for Stress Fluctuations in Plasticity, with Application to Granular Materials, SIAM J. Appl. Math. 58(1998), 1791-1807.
  80. G. Tardos, M.I. Khan, David G Schaeffer, Forces On a Slowly Rotating, Rough Cylinder in a Couette Device Containing a Dry, Frictional Powder, Physics of Fluids 10(1998), 335-341.
  81. Hayes, Brian T. and Schaeffer, David G., Plane shear waves under a periodic boundary disturbance in a saturated granular medium, Phys. D, vol. 121, no. 1-2, pp. 193--212, 1998 [MR99g:73052]
  82. Howle, Laurens and Schaeffer, David G. and Shearer, Michael and Zhong, Pei, Lithotripsy: the treatment of kidney stones with shock waves, SIAM Rev., vol. 40, no. 2, pp. 356--371 (electronic), 1998 [MR99d:92009]
  83. Gremaud, Pierre Alain and Schaeffer, David G. and Shearer, Michael, Numerical determination of flow corrective inserts for granular materials in conical hoppers, Internat. J. Non-Linear Mech., vol. 35, no. 5, pp. 869--882, 2000 [MR2001a:76129]
  84. Hayes, Brian T. and Schaeffer, David G., Stress-controlled shear waves in a saturated granular medium, European J. Appl. Math., vol. 11, no. 1, pp. 81--94, 2000 [MR2000k:74037]
  85. David G Schaeffer, M. Sexton, J. Socolar, Force Distribution in a Scalar Model for Non-Cohesive Granular Material, Phys. Rev. Lett. E 60 (1999), 1999-2008
  86. Witelski, Thomas P. and Schaeffer, David G. and Shearer, Michael, A discrete model for an ill-posed nonlinear parabolic PDE, Phys. D, vol. 160, no. 3-4, pp. 189--221, 2001 [MR1872040]
  87. G. Metcalfe, L. Kondic, D. Schaeffer, S. Tennakoon, and R. Behringer, Granular friction and the fluid-solid transition for shaken granular materials, Phys. Rev. E 65 (2002)
  88. Gremaud, P; Schaeffer, DG; Shearer, M, Granular Flow Past a Binsert, Report to Jenike & Johanson, Inc. (January, 1997)
  89. Socolar, JES; Schaeffer, DG; Claudin, P, Directed force chain networks and stress response in static granular materials, European Physical Journal E, vol. 7 no. 4 (2002), pp. 353-370  [abs]
  90. Schaeffer, DG; Tolkacheva, E; Mitchell, C, Analysis of the Fenton-Karma model through a one-dimensional map, Chaos, vol. 12 (2002), pp. 1034-1042
  91. Tolkacheva, EG; Schaeffer, DG; Gauthier, DJ; Mitchell, CC, Analysis of the Fenton-Karma model through an approximation by a one-dimensional map., Chaos, vol. 12 no. 4 (2002), pp. 1034-1042 [12779627], [doi]  [abs]
  92. Schaeffer, DG; Shearer, M; Witelski, T, One-dimensional solutions of an elastoplasticity model of granular material, Math. Models and Methods in Appl. Sciences, vol. 13 (2003), pp. 1629-1671
  93. Schaeffer, DG, Review of W. Cheney's "Analysis for applied mathematics", Amer. Math Monthly, vol. 110 (2003), pp. 550
  94. D.G. Schaeffer, E. Tolkacheva, D. Gauthier, W. Krassowska, Condition for alternans and stability of the 1:1 response pattern in a memory model of paced cardiac dynamics, Phys Rev E, vol. 67 (2003), pp. 031904
  95. Tolkacheva, EG; Schaeffer, DG; Gauthier, DJ; Krassowska, W, Condition for alternans and stability of the 1:1 response pattern in a "memory" model of paced cardiac dynamics., Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, vol. 67 no. 3 Pt 1 (March, 2003), pp. 031904, ISSN 1539-3755 [12689098], [doi]  [abs]
  96. Mitchell, CC; Schaeffer, DG, A two-current model for the dynamics of cardiac membrane., Bulletin of Mathematical Biology, vol. 65 no. 5 (2003), pp. 767-793, ISSN 0092-8240 [12909250], [doi]  [abs]
  97. Schaeffer, DG; Matthews, JV, A steady-state, hyperbolic free boundary problem for a granular-flow model, SIAM J. Math Analysis, vol. 36 (2004), pp. 256-271
  98. Schaeffer, DG; Cain, J; Tolkacheva, E; Gauthier, D, Rate-dependent waveback velocity of cardiac action potentials in a done-dimensional cable, Phys Rev E, vol. 70 (2004), pp. 061906-?
  99. Gremaud, PA; Matthews, JV; Schaeffer, DG, Secondary circulation in granular flow through nonaxisymmetric hoppers, Siam Journal on Applied Mathematics, vol. 64 no. 2 (2003), pp. 583-600, ISSN 0036-1399 [Gateway.cgi], [doi]  [abs]
  100. Schaeffer, DG; Tighe, B; Socolar, J; Michener, G; Huber, M, Force distribution in granular media, PRE, vol. 72 (2005), pp. 031306
  101. Schaeffer, DG; Kalb, S; Tolkacheva, E; Gauthier, D; Krassowska, W, Features of the restitution portrait for mapping models with an arbitrary amount of memory, Chaos, vol. 15 (2005), pp. 023701
  102. Schaeffer, DG; Matthews, M; Gremaud, P, On the computation of steady hopper flows III: Comparison of von Mises and Matsuoka-Nakai materials", J Comp. Phy., vol. 219 (2006), pp. 443-454
  103. Schaeffer, DG; Shearer, M; Witelski, T, Boundary-value problems for hyperbolic partial differential equations related to steady granular flow, Math. and Mech. of Solids, vol. 12 (2007), pp. 665-699
  104. Schaeffer, DG; Cain, JW; Gauthier, DJ; Kalb, SS; Oliver, RA; Tolkacheva, EG; Ying, W; Krassowska, W, An ionically based mapping model with memory for cardiac restitution., Bulletin of Mathematical Biology, vol. 69 no. 2 (February, 2007), pp. 459-482, ISSN 0092-8240 [17237915], [doi]  [abs]
  105. Zhao, X; Schaeffer, DG; Berger, CM; Gauthier, DJ, Small-Signal Amplification of Period-Doubling Bifurcations in Smooth Iterated Maps., Nonlinear Dynamics, vol. 48 no. 4 (2007), pp. 381-389, ISSN 0924-090X [19112525], [doi]  [abs]
  106. Berger, CM; Zhao, X; Schaeffer, DG; Dobrovolny, HM; Krassowska, W; Gauthier, DJ, Period-doubling bifurcation to alternans in paced cardiac tissue: crossover from smooth to border-collision characteristics., Physical Review Letters, vol. 99 no. 5 (2007), pp. 058101, ISSN 0031-9007 [17930795], [doi]  [abs]
  107. Zhao, X; Schaeffer, DG, Alternate Pacing of Border-Collision Period-Doubling Bifurcations., Nonlinear Dynamics, vol. 50 no. 3 (2007), pp. 733-742, ISSN 0924-090X [19132134], [doi]  [abs]
  108. Schaeffer, DG; Catlla, A; Witelski, T; Monson, E; Lin, A, On spiking models of synaptic activity and impulsive differential equations, SIAM Review, vol. 50 no. 553--569 (2008)
  109. Schaeffer, DG; Cain, J, Shortening of action potential duraction near an insulating boundary, Math Medicine and Biology, vol. 25 no. 21--36 (2008)
  110. Schaeffer, DG; Ying, W; Zhao, X, Asymptotic approximation of an ionic model for cardiac restitution., Nonlinear Dynamics, vol. 51 no. 1-2 (2008), pp. 189-198, ISSN 0924-090X [19122809], [doi]  [abs]
  111. Beck, M; Jones, CKRT; Schaeffer, D; Wechselberger, M, Electrical waves in a one-dimensional model of cardiac tissue, Siam Journal on Applied Dynamical Systems, vol. 7 no. 4 (December, 2008), pp. 1558-1581, Society for Industrial & Applied Mathematics (SIAM) [doi]  [abs]
  112. Schaeffer, DG; Iverson, RM, Steady and intermittent slipping in a model of landslide motion regulated by pore-pressure feedback, Siam Journal on Applied Mathematics, vol. 69 no. 3 (December, 2008), pp. 769-786, Society for Industrial & Applied Mathematics (SIAM), ISSN 0036-1399 [Gateway.cgi], [doi]  [abs]
  113. Dai, S; Schaeffer, DG, Spectrum of a linearized amplitude equation for alternans in a cardiac fiber, Siam Journal on Applied Mathematics, vol. 69 no. 3 (December, 2008), pp. 704-719, Society for Industrial & Applied Mathematics (SIAM), ISSN 0036-1399 [Gateway.cgi], [doi]  [abs]
  114. Dai, S; Schaeffer, DG, Chaos in a one-dimensional model for cardiac dynamics, Chaos, vol. 20 no. 2 (June, 2010)
  115. Dai, S; Schaeffer, DG, Bifurcations in a modulation equation for alternans in a cardiac fiber, Esaim: Mathematical Modelling and Numerical Analysis, vol. 44 no. 6 (Winter, 2010), pp. 1225-1238, E D P SCIENCES, ISSN 0764-583X [Gateway.cgi], [doi]

Papers Submitted

  1. Farjoun, Y; Schaeffer, DG, The hanging thin rod: a singularly perturbed eigenvalue problem, SIAM Sppl. Math. (July, 2010)
  2. Gonzales, K; Kayikci, O; Schaeffer, DG; Magwene, P, Modeling mutant phenotypes and oscillatory dynamics in the \emph{Saccharomyces cerevisiae} cAMP-PKA pathway, PLoS Computational Biology (Winter, 2010)
  3. S. Payne, B. Li, H. Song, D.G. Schaeffer, and L. You, Self-organized pattern formation by a pseudo-Turing mechanism (Winter, 2010)

Preprints

  1. D.G. Schaeffer, A. Catlla, T. Witelski, E. Monson, A. Lin, Annular patterns in reaction-diffusion systems and their implications for neural-glial interactions (2008)

 

dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320