Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke





.......................

.......................


Publications of Richard Hain    :chronological  alphabetical  combined listing:

%% Books   
@book{fds306181,
   Author = {Benson Farb and Richard Hain and Eduard Looijenga},
   Title = {Moduli Spaces of Riemann Surfaces},
   Volume = {20},
   Series = {IAS/Park City Mathematics Series},
   Pages = {x+356 pages},
   Publisher = {American Mathematical Society, Providence, RI; Institute for
             Advanced Study (IAS), Princeton, NJ},
   Editor = {Farb, B and Hain, R and Looijenga, E},
   Year = {2013},
   ISBN = {978-0-8218-9887-1},
   url = {http://www.ams.org/bookstore-getitem/item=PCMS-20},
   Key = {fds306181}
}

@book{fds306182,
   Author = {Shiing-Shen Chern and Lei Fu and Richard M.
             Hain},
   Title = {Contemporary Trends in Algebraic Geometry and Algebraic
             Topology},
   Volume = {5},
   Pages = {viii+266 pages},
   Publisher = {World Scientific Publishing Co. Pte. Ltd.},
   Editor = {Chern, S-S and Fu, L and Hain, R},
   Year = {2002},
   ISBN = {981-02-4954-3},
   url = {http://www.wspc.com.sg/books/mathematics/4966.html},
   Doi = {10.1142/9789812777416},
   Key = {fds306182}
}

@book{fds306184,
   Author = {Carl-Friedrich Bodigheimer and Richard M. Hain},
   Title = {Mapping Class Groups and Moduli Spaces of Riemann
             Surfaces},
   Volume = {150},
   Pages = {xx+372-xx+372},
   Publisher = {American Mathematical Society},
   Editor = {Bödigheimer, C-F and Hain, R},
   Year = {1993},
   ISBN = {9780821851678},
   url = {http://dx.doi.org/10.1090/conm/150},
   Doi = {10.1090/conm/150},
   Key = {fds306184}
}

@book{fds306185,
   Author = {, },
   Title = {Chen Memorial Volume},
   Journal = {Illinois Journal of Mathematics},
   Volume = {34},
   Editor = {Hain, R and Tondeur, P},
   Year = {1990},
   Key = {fds306185}
}

@book{fds287237,
   Author = {Hain, RM},
   Title = {Iterated integrals and homotopy periods},
   Volume = {47},
   Pages = {iv-98},
   Publisher = {American Mathematical Society (AMS)},
   Year = {1984},
   url = {http://dx.doi.org/10.1090/memo/0291},
   Doi = {10.1090/memo/0291},
   Key = {fds287237}
}


%% Papers Published   
@article{fds337126,
   Author = {Brown, F and Hain, R},
   Title = {Algebraic de Rham theory for weakly holomorphic modular
             forms of level one},
   Journal = {Algebra & Number Theory},
   Volume = {12},
   Number = {3},
   Pages = {723-750},
   Year = {2018},
   Month = {January},
   url = {http://dx.doi.org/10.2140/ant.2018.12.723},
   Abstract = {© 2018, Mathematical Sciences Publishers. All rights
             reserved. We establish an Eichler–Shimura isomorphism for
             weakly modular forms of level one. We do this by relating
             weakly modular forms with rational Fourier coefficients to
             the algebraic de Rham cohomology of the modular curve with
             twisted coefficients. This leads to formulae for the periods
             and quasiperiods of modular forms.},
   Doi = {10.2140/ant.2018.12.723},
   Key = {fds337126}
}

@article{fds320425,
   Author = {Hain, R},
   Title = {Deligne-Beilinson Cohomology of Affine Groups},
   Booktitle = {Hodge Theory and $L^2$-analysis},
   Publisher = {International Press},
   Editor = {Ji, L},
   Year = {2017},
   ISBN = {1571463518},
   url = {http://arxiv.org/abs/1507.03144},
   Abstract = {The goal of this paper is to develop the theory of
             Deligne-Beilinson cohomology of affine groups with a mixed
             Hodge structure. The motivation comes from Hodge theory and
             the study of motives, where such groups appear. Several of
             Francis Brown's period computations (arXiv:1407.5167) are
             interpreted as elements of the DB cohomology of the relative
             unipotent completion of $SL_2(Z)$ and their cup products.
             The results in this paper are used in arXiv:1403.6443 where
             they are used to prove that Pollack's quadratic relations
             are motivic.},
   Key = {fds320425}
}

@article{fds287213,
   Author = {Arapura, D and Dimca, A and Hain, R},
   Title = {On the fundamental groups of normal varieties},
   Journal = {Communications in Contemporary Mathematics},
   Volume = {18},
   Number = {4},
   Pages = {1550065-1550065},
   Year = {2016},
   Month = {August},
   ISSN = {0219-1997},
   url = {http://dx.doi.org/10.1142/S0219199715500650},
   Abstract = {© 2016 World Scientific Publishing Company. We show that
             the fundamental groups of normal complex algebraic varieties
             share many properties of the fundamental groups of smooth
             varieties. The jump loci of rank one local systems on a
             normal variety are related to the jump loci of a resolution
             and of a smoothing of this variety.},
   Doi = {10.1142/S0219199715500650},
   Key = {fds287213}
}

@article{fds324840,
   Author = {Hain, R},
   Title = {Notes on the Universal Elliptic KZB Equation},
   Journal = {Pure and Applied Mathematics Quarterly},
   Volume = {12},
   Number = {2},
   Publisher = {International Press},
   Year = {2016},
   Month = {July},
   url = {http://arxiv.org/abs/1309.0580v3},
   Abstract = {The universal elliptic KZB equation is the integrable
             connection on the pro-vector bundle over M_{1,2} whose fiber
             over the point corresponding to the elliptic curve E and a
             non-zero point x of E is the unipotent completion of
             \pi_1(E-{0},x). This was written down independently by
             Calaque, Enriquez and Etingof (arXiv:math/0702670), and by
             Levin and Racinet (arXiv:math/0703237). It generalizes the
             KZ-equation in genus 0. These notes are in four parts. The
             first two parts provide a detailed exposition of this
             connection (following Levin-Racinet); the third is a
             leisurely exploration of the connection in which, for
             example, we compute the limit mixed Hodge structure on the
             unipotent fundamental group of the Tate curve minus its
             identity. In the fourth part we elaborate on ideas of Levin
             and Racinet and explicitly compute the connection over the
             moduli space of elliptic curves with a non-zero abelian
             differential, showing that it is defined over
             Q.},
   Key = {fds324840}
}

@article{fds320302,
   Author = {Hain, R},
   Title = {The Hodge-de Rham theory of modular groups},
   Volume = {427},
   Pages = {422-514},
   Booktitle = {Recent Advances in Hodge Theory Period Domains, Algebraic
             Cycles, and Arithmetic},
   Publisher = {Cambridge University Press},
   Editor = {Kerr, M and Pearlstein, G},
   Year = {2016},
   Month = {January},
   ISBN = {110754629X},
   Key = {fds320302}
}

@article{fds320426,
   Author = {Hain, R and Matsumoto, M},
   Title = {Universal Mixed Elliptic Motives},
   Journal = {Journal of the Institute of Mathematics of
             Jussieu},
   Year = {2016},
   url = {http://arxiv.org/abs/1512.03975},
   Abstract = {In this paper we construct a Q-linear tannakian category
             MEM_1 of universal mixed elliptic motives over the moduli
             space M_{1,1} of elliptic curves. It contains MTM, the
             category of mixed Tate motives unramified over the integers.
             Each object of MEM_1 is an object of MTM endowed with an
             action of SL_2(Z) that is compatible with its structure.
             Universal mixed elliptic motives can be thought of as
             motivic local systems over M_{1,1} whose fiber over the
             tangential base point d/dq at the cusp is a mixed Tate
             motive. The basic structure of the tannakian fundamental
             group of MEM is determined and the lowest order terms of all
             relations are found (using computations of Francis Brown),
             including the arithmetic relations, which describe the
             "infinitesimal Galois action". We use the presentation to
             give a new and more conceptual proof of the Ihara-Takao
             congruences.},
   Key = {fds320426}
}

@article{fds287214,
   Author = {Hain, R},
   Title = {Genus 3 mapping class groups are not Kähler},
   Journal = {Journal of Topology},
   Volume = {8},
   Number = {1},
   Pages = {213-246},
   Publisher = {WILEY},
   Year = {2015},
   Month = {March},
   ISSN = {1753-8416},
   url = {http://arxiv.org/abs/1305.2052},
   Doi = {10.1112/jtopol/jtu020},
   Key = {fds287214}
}

@article{fds287267,
   Author = {Dimca, A and Hain, R and Papadima, S},
   Title = {The abelianization of the Johnson kernel},
   Journal = {Journal of the European Mathematical Society},
   Volume = {16},
   Number = {4},
   Pages = {805-822},
   Year = {2014},
   Month = {January},
   ISSN = {1435-9855},
   url = {http://arxiv.org/abs/1101.1392},
   Abstract = {We prove that the first complex homology of the Johnson
             subgroup of the Torelli group Tgis a non-trivial, unipotent
             Tg-module for all g ≥ 4 and give an explicit presentation
             of it as a Sym H1(Tg,C)-module when g ≥ 6. We do this by
             proving that, for a finitely generated group G satisfying an
             assumption close to formality, the triviality of the
             restricted characteristic variety implies that the first
             homology of its Johnson kernel is a nilpotent module over
             the corresponding Laurent polynomial ring, isomorphic to the
             infinitesimal Alexander invariant of the associated graded
             Lie algebra of G. In this setup, we also obtain a precise
             nilpotence test. © European Mathematical Society
             2014.},
   Doi = {10.4171/JEMS/447},
   Key = {fds287267}
}

@article{fds287265,
   Author = {Hain, R},
   Title = {Remarks on non-abelian cohomology of proalgebraic
             groups},
   Journal = {Journal of Algebraic Geometry},
   Volume = {22},
   Number = {3},
   Pages = {581-598},
   Publisher = {American Mathematical Society (AMS)},
   Year = {2013},
   Month = {March},
   ISSN = {1056-3911},
   url = {http://dx.doi.org/10.1090/S1056-3911-2013-00598-6},
   Doi = {10.1090/s1056-3911-2013-00598-6},
   Key = {fds287265}
}

@article{fds287242,
   Author = {Hain, R},
   Title = {Normal Functions and the Geometry of Moduli Spaces of
             Curves},
   Volume = {1},
   Pages = {527-578},
   Booktitle = {Handbook of Moduli},
   Publisher = {International Press},
   Editor = {Farkas, G and Morrison, I},
   Year = {2013},
   url = {http://arxiv.org/abs/1102.4031},
   Key = {fds287242}
}

@article{fds287264,
   Author = {Hain, R},
   Title = {Rational Points of Universal Curves},
   Journal = {Journal of the American Mathematical Society},
   Volume = {24},
   Number = {3},
   Pages = {709-769},
   Year = {2011},
   ISSN = {0894-0347},
   url = {http://dx.doi.org/10.1090/S0894-0347-2011-00693-0},
   Doi = {10.1090/S0894-0347-2011-00693-0},
   Key = {fds287264}
}

@article{fds287243,
   Author = {Hain, R},
   Title = {Lectures on Moduli Spaces of Elliptic Curves},
   Volume = {16},
   Series = {Advanced Lectures in Mathematics},
   Number = {16},
   Pages = {95-166},
   Booktitle = {Transformation Groups and Moduli Spaces of Curves: Advanced
             Lectures in Mathematics},
   Publisher = {Higher Education Press},
   Address = {Beijing},
   Editor = {Ji, L and Yau, ST},
   Year = {2010},
   ISBN = {978-7-04-029842-0},
   url = {http://arxiv.org/abs/0812.1803},
   Key = {fds287243}
}

@article{fds287268,
   Author = {Hain, R and Matsumoto, M},
   Title = {Relative Pro-$l$ Completions of Mapping Class
             Groups},
   Journal = {Journal of Algebra},
   Volume = {321},
   Number = {11},
   Pages = {3335-3374},
   Year = {2009},
   ISSN = {0021-8693},
   url = {http://dx.doi.org/10.1016/j.jalgebra.2009.02.014},
   Doi = {10.1016/j.jalgebra.2009.02.014},
   Key = {fds287268}
}

@article{fds287244,
   Author = {Hain, R},
   Title = {Relative Weight Filtrations on Completions of Mapping Class
             Groups},
   Volume = {52},
   Series = {Advanced Studies in Pure Mathematics},
   Pages = {309-368},
   Booktitle = {Groups of Diffeomorphisms: Advanced Studies in Pure
             Mathematics},
   Publisher = {Mathematical Society of Japan},
   Year = {2008},
   url = {http://arxiv.org/abs/0802.0814},
   Key = {fds287244}
}

@article{fds287245,
   Author = {Hain, R},
   Title = {Finiteness and Torelli spaces},
   Volume = {74},
   Series = {Proc. Symp. Pure Math. 74},
   Pages = {57-70},
   Booktitle = {Problems on Mapping Class Groups and Related
             Topics},
   Publisher = {American Mathematical Society},
   Editor = {Farb, B},
   Year = {2006},
   ISBN = {9780821838389},
   url = {http://dx.doi.org/10.1090/pspum/074/2264131},
   Doi = {10.1090/pspum/074/2264131},
   Key = {fds287245}
}

@article{fds287270,
   Author = {Kim, M and Hain, RM},
   Title = {The Hyodo-Kato theorem for rational homotopy
             types},
   Journal = {Mathematical Research Letters},
   Volume = {12},
   Number = {2-3},
   Pages = {155-169},
   Year = {2005},
   Month = {March},
   ISSN = {1073-2780},
   url = {http://hdl.handle.net/10161/8976 Duke open
             access},
   Abstract = {The Hyodo-Kato theorem relates the De Rham cohomology of a
             variety over a local field with semi-stable reduction to the
             log crystalline cohomology of the special fiber. In this
             paper we prove an analogue for rational homotopy types. In
             particular, this gives a comparison isomorphism for
             fundamental groups.},
   Key = {fds287270}
}

@article{fds287271,
   Author = {Hain, R and Matsumoto, M},
   Title = {Galois Actions on Fundamental Groups of Curves and the Cycle
             $C-C^-$},
   Journal = {Journal of the Institute of Mathematics of
             Jussieu},
   Volume = {4},
   Pages = {363-403},
   Publisher = {Cambridge University Press (CUP): STM Journals},
   Year = {2005},
   ISSN = {1475-3030},
   url = {http://dx.doi.org/10.1017/S1474748005000095},
   Doi = {10.1017/S1474748005000095},
   Key = {fds287271}
}

@article{fds287274,
   Author = {Hain, R and Matsumoto, M},
   Title = {Weighted completion of galois groups and galois actions on
             the fundamental group of ℙ1 -{0, 1,
             ∞}},
   Journal = {Compositio Mathematica},
   Volume = {139},
   Number = {2},
   Pages = {119-167},
   Year = {2004},
   Month = {November},
   ISSN = {0010-437X},
   url = {http://dx.doi.org/10.1023/B:COMP.0000005077.42732.93},
   Abstract = {Fix a prime number l. We prove a conjecture stated by Ihara,
             which he attributes to Deligne, about the action of the
             absolute Galois group on the pro-l completion of the
             fundamental group of the thrice punctured projective line.
             Similar techniques are also used to prove part of a
             conjecture of Goneharov, also about the action of the
             absolute Galois group on the fundamental group of the thrice
             punctured projective line. The main technical tool is the
             weighted completion of a profinite group with respect to a
             reductive representation (and other appropriate data). ©
             2003 Kluwer Academic Publishers.},
   Doi = {10.1023/B:COMP.0000005077.42732.93},
   Key = {fds287274}
}

@article{fds287273,
   Author = {Kim, M and Hain, RM},
   Title = {A De Rham–Witt approach to crystalline rational homotopy
             theory},
   Journal = {Compositio Mathematica},
   Volume = {140},
   Number = {05},
   Pages = {1245-1276},
   Publisher = {WILEY},
   Year = {2004},
   Month = {September},
   ISSN = {0010-437X},
   url = {http://hdl.handle.net/10161/8977 Duke open
             access},
   Doi = {10.1112/s0010437x04000442},
   Key = {fds287273}
}

@article{fds287272,
   Author = {Hain, R and Reed, D},
   Title = {On the arakelov geometry of moduli spaces of
             curves},
   Journal = {Journal of Differential Geometry},
   Volume = {67},
   Number = {2},
   Pages = {195-228},
   Year = {2004},
   Month = {Summer},
   ISSN = {0022-040X},
   url = {http://dx.doi.org/10.4310/jdg/1102536200},
   Abstract = {In this paper we compute the asymptotics of the natural
             metric on the line bundle over the moduli spaceMg associated
             to the algebraic cycle C − C− in the jacobian Jac C of a
             smooth projective curve C of genus g ≤ 3. The asymptotics
             are related to the structure of the mapping class group of a
             genus g surface. © 2004 Applied Probability
             Trust.},
   Doi = {10.4310/jdg/1102536200},
   Key = {fds287272}
}

@article{fds287246,
   Author = {Hain, R},
   Title = {Periods of Limit Mixed Hodge Structures},
   Pages = {113-133},
   Booktitle = {CDM 2002: Current Developments in Mathematics in Honor of
             Wilfried Schmid & George Lusztig},
   Publisher = {International Press},
   Editor = {Jerison, D and Lustig, G and Mazur, B and Mrowka, T and Schmid, W and Stanley, R and Yau, ST},
   Year = {2003},
   url = {http://arxiv.org/abs/math/0305090},
   Key = {fds287246}
}

@article{fds287275,
   Author = {Hain, R and Matsumoto, M},
   Title = {Tannakian Fundamental Groups Associated to Galois
             Groups},
   Volume = {41},
   Pages = {183-216},
   Booktitle = {Galois Groups and Fundamental Groups},
   Publisher = {CAMBRIDGE UNIV PRESS},
   Editor = {Schneps, L},
   Year = {2003},
   url = {http://arxiv.org/abs/math/0010210},
   Key = {fds287275}
}

@article{fds287247,
   Author = {Hain, R},
   Title = {ITERATED INTEGRALS AND ALGEBRAIC CYCLES: EXAMPLES AND
             PROSPECTS},
   Volume = {5},
   Pages = {55-118},
   Booktitle = {Contemporary Trends in Algebraic Geometry and Algebraic
             Topology},
   Publisher = {World Scientific},
   Year = {2002},
   Month = {August},
   ISBN = {9789810249540},
   url = {http://dx.doi.org/10.1142/9789812777416_0004},
   Doi = {10.1142/9789812777416_0004},
   Key = {fds287247}
}

@article{fds287263,
   Author = {Hain, R},
   Title = {The rational cohomology ring of the moduli space of abelian
             3-folds},
   Journal = {Mathematical Research Letters},
   Volume = {9},
   Number = {4},
   Pages = {473-491},
   Year = {2002},
   Month = {January},
   url = {http://dx.doi.org/10.4310/MRL.2002.v9.n4.a7},
   Doi = {10.4310/MRL.2002.v9.n4.a7},
   Key = {fds287263}
}

@article{fds287216,
   Author = {Hain, R and Tondeur, P},
   Title = {The Life and Work of Kuo-Tsai Chen [ MR1046561
             (91b:01072)]},
   Volume = {5},
   Pages = {251-266},
   Booktitle = {Contemporary trends in algebraic geometry and algebraic
             topology (Tianjin, 2000)},
   Publisher = {World Sci. Publ., River Edge, NJ},
   Year = {2002},
   url = {http://dx.doi.org/10.1142/9789812777416_0012},
   Doi = {10.1142/9789812777416_0012},
   Key = {fds287216}
}

@article{fds287262,
   Author = {Hain, R and Reed, D},
   Title = {Geometric proofs of some results of Morita},
   Journal = {Journal of Algebraic Geometry},
   Volume = {10},
   Number = {2},
   Pages = {199-217},
   Year = {2001},
   Month = {April},
   url = {http://arxiv.org/abs/math/9810054},
   Key = {fds287262}
}

@article{fds287251,
   Author = {Hain, R},
   Title = {Moduli of Riemann surfaces, transcendental
             aspects},
   Volume = {1},
   Pages = {293-+},
   Booktitle = {ALgebraic Geometry},
   Publisher = {INT CENTRE THEORETICAL PHYSICS},
   Editor = {Goettsche, L},
   Year = {2000},
   Month = {January},
   ISBN = {92-95003-00-4},
   Key = {fds287251}
}

@article{fds287238,
   Author = {Dupont, J and Hain, R and Zucker, S},
   Title = {Regulators and Characteristic Classes of Flat
             Bundles},
   Volume = {24},
   Pages = {47-92},
   Booktitle = {The arithmetic and geometry of algebraic cycles (Banff, AB,
             1998)},
   Publisher = {American Mathematical Society},
   Year = {2000},
   url = {http://arxiv.org/abs/alg-geom/9202023},
   Key = {fds287238}
}

@article{fds287248,
   Author = {Hain, R},
   Title = {Locally Symmetric Families of Curves and
             Jacobians},
   Pages = {91-108},
   Booktitle = {Moduli of Curves and Abelian Varieties},
   Publisher = {Friedr. Vieweg},
   Editor = {Faber, C and Looijenga, E},
   Year = {1999},
   url = {http://arxiv.org/abs/math/9803028},
   Key = {fds287248}
}

@article{fds287261,
   Author = {Hain, RM},
   Title = {The Hodge De Rham theory of relative Malcev
             completion},
   Journal = {Annales Scientifiques De L’École Normale
             Supérieure},
   Volume = {31},
   Number = {1},
   Pages = {47-92},
   Year = {1998},
   Month = {January},
   url = {http://archive.numdam.org/article/ASENS_1998_4_31_1_47_0.pdf},
   Abstract = {Suppose that X is a smooth manifold and ρ : π1 (X,N) → S
             is a representation of the fundamental group of X into a
             real reductive group with Zariski dense image. To such data
             one can associate the Malcev completion G of π1(X,x)
             relative to ρ. In this paper we generalize Chen's iterated
             integrals and show that the H0 of a suitable complex of
             these iterated integrals is the coordinate ring of G. This
             is used to show that if X is a complex algebraic manifold
             and ρ is the monodromy representation of a variation of
             Hodge structure over X, then the coordinate ring of G has a
             canonical mixed Hodge structure. © Elsevier,
             Paris.},
   Doi = {10.1016/S0012-9593(98)80018-9},
   Key = {fds287261}
}

@article{fds287260,
   Author = {Hain, R},
   Title = {Infinitesimal presentations of the Torelli
             groups},
   Journal = {Journal of the American Mathematical Society},
   Volume = {10},
   Number = {3},
   Pages = {597-651},
   Year = {1997},
   Month = {July},
   url = {http://www.ams.org/jams/1997-10-03/},
   Key = {fds287260}
}

@article{fds287236,
   Author = {Freedman, M and Hain, R and Teichner, P},
   Title = {Betti Number Estimates for Nilpotent Groups},
   Volume = {5},
   Pages = {413-434},
   Booktitle = {Fields Medallists’ Lectures},
   Publisher = {World Science},
   Editor = {Atiyah, and Iagolnitzer},
   Year = {1997},
   url = {http://dx.doi.org/10.1142/9789812385215_0045},
   Doi = {10.1142/9789812385215_0045},
   Key = {fds287236}
}

@article{fds287239,
   Author = {Hain, R and Looijenga, E},
   Title = {Mapping Class Groups and Moduli Spaces of
             Curves},
   Volume = {62},
   Pages = {97-142},
   Booktitle = {Algebraic geometry—Santa Cruz 1995},
   Publisher = {American Mathematical Society},
   Year = {1997},
   url = {http://arxiv.org/abs/alg-geom/9607004},
   Key = {fds287239}
}

@article{fds287257,
   Author = {Hain, RM},
   Title = {The existence of higher logarithms},
   Journal = {Compositio Mathematica},
   Volume = {100},
   Number = {3},
   Pages = {247-276},
   Year = {1996},
   Month = {December},
   ISSN = {0010-437X},
   url = {http://arxiv.org/abs/alg-geom/9308005},
   Abstract = {In this paper we establish the existence of all higher
             logarithms as Deligne cohomology classes in a sense slightly
             weaker than that of [13, Sect. 12], but in a sense that
             should be strong enough for defining Chem classes on the
             algebraic K-theory of complex algebraic varieties. In
             particular, for each integer p ≥ 1, we construct a
             multivalued holomorphic function on a Zariski open subset of
             the self dual grassmannian of p-planes in ℂ2p which
             satisfies a canonical 2p + 1 term functional equation. The
             key new technical ingredient is the construction of a
             topology on the generic part of each Grassmannian which is
             coarser than the Zariski topology and where each open
             contains another which is both a K (π, 1) and a rational K
             (π, 1). © 1996 Kluwer Academic Publishers.},
   Key = {fds287257}
}

@article{fds287259,
   Author = {Elizondo, EJ and Hain, RM},
   Title = {Chow varieties of Abelian varieties},
   Journal = {Boletin De La Sociedad Matematica Mexicana},
   Volume = {2},
   Number = {2},
   Pages = {95-99},
   Year = {1996},
   Month = {December},
   Abstract = {We prove that if A is an abelian variety over ℂ acting
             algebraically on a complex projective variety X, then the
             Euler characteristic of X equals the Euler characteristic of
             the fixed point set XA. We obtain that if A is an abelian
             variety and X is a principal A-bundle over a projective
             variety Y, then the Euler characteristic of a Chow variety
             in X equals either zero or the Euler characteristic of a
             Chow variety of Y.},
   Key = {fds287259}
}

@article{fds287258,
   Author = {Hain, RM and Yang, J},
   Title = {Real Grassmann polylogarithms and Chern classes},
   Journal = {Mathematische Annalen},
   Volume = {304},
   Number = {1},
   Pages = {157-201},
   Year = {1996},
   Month = {January},
   url = {http://dx.doi.org/10.1007/BF01446290},
   Doi = {10.1007/BF01446290},
   Key = {fds287258}
}

@article{fds287240,
   Author = {Hain, RM},
   Title = {Torelli Groups and Geometry of Moduli Spaces of
             Curves},
   Volume = {28},
   Pages = {97-143},
   Booktitle = {Current Topics in Complex Algebraic Geometry},
   Publisher = {CAMBRIDGE UNIV PRESS},
   Editor = {Clements, CH and Kollar, J},
   Year = {1995},
   url = {http://www.msri.org/publications/books/Book28/},
   Key = {fds287240}
}

@article{fds287249,
   Author = {Hain, RM},
   Title = {Classical Polylogarithms, Motives},
   Volume = {55},
   Pages = {3-42},
   Booktitle = {Motives (Seattle, WA, 1991)},
   Publisher = {American Mathematical Society},
   Year = {1994},
   Key = {fds287249}
}

@article{fds287241,
   Author = {Hain, RM},
   Title = {Completions of Mapping Class Groups and the Cycle
             C-C},
   Journal = {Surveys on Discrete and Computational Geometry: Twenty Years
             Later},
   Volume = {150},
   Pages = {75-105},
   Publisher = {American Mathematical Society},
   Year = {1993},
   ISSN = {0271-4132},
   url = {http://dx.doi.org/10.1090/conm/150/01287},
   Doi = {10.1090/conm/150/01287},
   Key = {fds287241}
}

@article{fds287250,
   Author = {HAIN, RM},
   Title = {NIL-MANIFOLDS AS LINKS OF ISOLATED SINGULARITIES},
   Journal = {Compositio Mathematica},
   Volume = {84},
   Number = {1},
   Pages = {91-99},
   Year = {1992},
   Month = {October},
   ISSN = {0010-437X},
   url = {http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:A1992JR84500008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=47d3190e77e5a3a53558812f597b0b92},
   Key = {fds287250}
}

@article{fds287234,
   Author = {Hain, RM},
   Title = {Algebraic Cycles and Variations of Mixed Hodge Structure,
             Complex Geometry and Lie Theory},
   Volume = {53},
   Pages = {175-221},
   Booktitle = {Complex geometry and Lie theory (Sundance, UT,
             1989)},
   Publisher = {American Mathematical Society},
   Year = {1991},
   url = {http://dx.doi.org/10.1090/pspum/053/1141202},
   Doi = {10.1090/pspum/053/1141202},
   Key = {fds287234}
}

@article{fds287235,
   Author = {Hain, RM and MacPherson, R},
   Title = {Introduction to Higher Logarithms},
   Volume = {37},
   Pages = {337-353},
   Booktitle = {Properties of Polylogarithms},
   Publisher = {American Mathematical Societ},
   Editor = {Lewin, L},
   Year = {1991},
   url = {http://dx.doi.org/10.1090/surv/037/15},
   Doi = {10.1090/surv/037/15},
   Key = {fds287235}
}

@article{fds287231,
   Author = {Hain, RM and MacPherson, R},
   Title = {Higher logarithms},
   Journal = {Illinois Journal of Mathematics},
   Volume = {34},
   Number = {2},
   Pages = {392-475},
   Year = {1990},
   Month = {January},
   ISSN = {0019-2082},
   url = {http://projecteuclid.org/euclid.ijm/1255988272},
   Key = {fds287231}
}

@article{fds287232,
   Author = {Hain, R and Tondeur, P},
   Title = {The life and work of Kuo-Tsai Chen},
   Journal = {Illinois Journal of Mathematics},
   Volume = {34},
   Number = {2},
   Pages = {175-190},
   Publisher = {Duke University Press},
   Year = {1990},
   Month = {January},
   ISSN = {0019-2082},
   url = {http://projecteuclid.org/euclid.ijm/1255988263},
   Doi = {10.1215/ijm/1255988263},
   Key = {fds287232}
}

@article{fds287233,
   Author = {Hain, R},
   Title = {Biextensions and heights associated to curves of odd
             genus},
   Journal = {Duke Mathematical Journal},
   Volume = {61},
   Number = {3},
   Pages = {859-898},
   Year = {1990},
   Month = {January},
   ISSN = {0012-7094},
   url = {http://dx.doi.org/10.1215/S0012-7094-90-06133-2},
   Doi = {10.1215/S0012-7094-90-06133-2},
   Key = {fds287233}
}

@article{fds287255,
   Author = {Durfee, AH and Hain, RM},
   Title = {Mixed Hodge Structures on the Homotopy of
             Links},
   Journal = {Mathematische Annalen},
   Volume = {280},
   Pages = {69-83},
   Year = {1988},
   ISSN = {0025-5831},
   url = {http://dx.doi.org/10.1007/BF01474182},
   Doi = {10.1007/BF01474182},
   Key = {fds287255}
}

@article{fds287256,
   Author = {Hain, RM},
   Title = {The de Rham homotopy theory of complex algebraic varieties
             II},
   Journal = {K Theory},
   Volume = {1},
   Number = {5},
   Pages = {481-497},
   Year = {1987},
   Month = {September},
   ISSN = {0920-3036},
   url = {http://dx.doi.org/10.1007/BF00536980},
   Abstract = {We show that the local system of homotopy groups, associated
             with a topologically locally trivial family of smooth
             pointed varieties, underlies a good variation of mixed Hodge
             structure. In particular we show that there is a limit mixed
             Hodge structure on homotopy associated with a degeneration
             of such varieties. © 1987 Kluwer Academic
             Publishers.},
   Doi = {10.1007/BF00536980},
   Key = {fds287256}
}

@article{fds287254,
   Author = {Hain, RM},
   Title = {The de rham homotopy theory of complex algebraic varieties
             I},
   Journal = {K Theory},
   Volume = {1},
   Number = {3},
   Pages = {271-324},
   Year = {1987},
   Month = {May},
   ISSN = {0920-3036},
   url = {http://dx.doi.org/10.1007/BF00533825},
   Abstract = {In this paper we use Chen's iterated integrals to put a
             mixed Hodge structure on the homotopy Lie algebra of an
             arbitrary complex algebraic variety, generalizing work of
             Deligne and Morgan. Similar techniques are used to put a
             mixed Hodge structure on other topological invariants
             associated with varieties that are accessible to rational
             homotopy theory such as the cohomology of the free loopspace
             of a simply connected variety. © 1987 D. Reidel Publishing
             Company.},
   Doi = {10.1007/BF00533825},
   Key = {fds287254}
}

@article{fds287252,
   Author = {Hain, RM and Zucker, S},
   Title = {Unipotent variations of mixed Hodge structure},
   Journal = {Inventiones Mathematicae},
   Volume = {88},
   Number = {1},
   Pages = {83-124},
   Year = {1987},
   Month = {February},
   ISSN = {0020-9910},
   url = {http://dx.doi.org/10.1007/BF01405093},
   Doi = {10.1007/BF01405093},
   Key = {fds287252}
}

@article{fds287225,
   Author = {Hain, RM and Zucker, S},
   Title = {A Guide to Unipotent Variations of Mixed Hodge
             Structure},
   Journal = {Proceedings of the U.S. Spain Workshop},
   Volume = {1246},
   Pages = {92-106},
   Publisher = {Springer Verlag},
   Year = {1987},
   url = {http://dx.doi.org/10.1007/BFb0077532},
   Doi = {10.1007/BFb0077532},
   Key = {fds287225}
}

@article{fds287226,
   Author = {Hain, RM},
   Title = {Higher Albanese Manifolds},
   Journal = {Proceedings of the U.S. Spain Workshop},
   Volume = {1246},
   Pages = {84-91},
   Publisher = {Springer Verlag},
   Year = {1987},
   url = {http://dx.doi.org/10.1007/BFb0077531},
   Doi = {10.1007/BFb0077531},
   Key = {fds287226}
}

@article{fds287227,
   Author = {Hain, RM},
   Title = {Iterated Integrals and Mixed Hodge Structures on Homotopy
             Groups},
   Journal = {Proceedings of the U.S. Spain Workshop},
   Volume = {1246},
   Pages = {75-83},
   Publisher = {Springer Verlag},
   Year = {1987},
   url = {http://dx.doi.org/10.1007/BFb0077530},
   Doi = {10.1007/BFb0077530},
   Key = {fds287227}
}

@article{fds287228,
   Author = {Hain, RM},
   Title = {The Geometry of the Mixed Hodge Structure on the Fundamental
             Group},
   Volume = {46},
   Pages = {247-282},
   Booktitle = {Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine,
             1985)},
   Publisher = {American Mathematical Society},
   Year = {1987},
   Key = {fds287228}
}

@article{fds287229,
   Author = {Hain, RM and Zucker, S},
   Title = {Truncations of Mixed Hodge Complexes},
   Journal = {Proceedings of the U.S. Spain Workshop},
   Volume = {1246},
   Pages = {107-114},
   Publisher = {Spring-Verlag},
   Year = {1987},
   url = {http://dx.doi.org/10.1007/BFb0077533},
   Doi = {10.1007/BFb0077533},
   Key = {fds287229}
}

@article{fds287230,
   Author = {Carlson, JA and Hain, RM},
   Title = {Extensions of Variations of Mixed Hodge Structure},
   Pages = {39-65},
   Publisher = {Theorie de Hodge},
   Year = {1987},
   Key = {fds287230}
}

@article{fds287223,
   Author = {Hain, RM},
   Title = {On the indecomposable elements of the bar
             construction},
   Journal = {Proceedings of the American Mathematical
             Society},
   Volume = {98},
   Number = {2},
   Pages = {312-312},
   Publisher = {American Mathematical Society (AMS)},
   Year = {1986},
   Month = {February},
   ISSN = {0002-9939},
   url = {http://dx.doi.org/10.2307/2045704},
   Abstract = {An explicit formula for a canonical splitting s:
             Qℬ(ℰ.)⟶ℬ(ℰ.) of the projection
             ℬ(ℰ.)⟶Qℬ(ℰ.) of the bar construction on a
             commutative d.g. algebraℰ.onto its indecomposables is
             given. We prove that s induces a d.g. algebra isomorphism
             Λ(Qℬ(ℰ.))⟶ℬ(ℰ.) and that H(Qℬ(ℰ.)) is
             isomorphic with QH(ℬ(ℰ.)). © 1986 American Mathematical
             Society.},
   Doi = {10.1090/s0002-9939-1986-0854039-5},
   Key = {fds287223}
}

@article{fds287222,
   Author = {Hain, RM},
   Title = {Mixed Hodge structures on homotopy groups},
   Journal = {Bulletin of the American Mathematical Society},
   Volume = {14},
   Number = {1},
   Pages = {111-115},
   Publisher = {American Mathematical Society (AMS)},
   Year = {1986},
   Month = {January},
   ISSN = {0273-0979},
   url = {http://dx.doi.org/10.1090/s0273-0979-1986-15410-8},
   Doi = {10.1090/s0273-0979-1986-15410-8},
   Key = {fds287222}
}

@article{fds287224,
   Author = {Hain, RM},
   Title = {On a generalization of Hilbert's 21st problem},
   Journal = {Annales Scientifiques De L’École Normale
             Supérieure},
   Volume = {19},
   Number = {4},
   Pages = {609-627},
   Year = {1986},
   ISSN = {0012-9593},
   url = {http://www.numdam.org/item?id=ASENS_1986_4_19_4_609_0},
   Doi = {10.24033/asens.1520},
   Key = {fds287224}
}

@article{fds287253,
   Author = {Hain, RM},
   Title = {Iterated integrals, intersection theory and link
             groups},
   Journal = {Topology},
   Volume = {24},
   Number = {1},
   Pages = {45-66},
   Year = {1985},
   Month = {January},
   ISSN = {0040-9383},
   url = {http://dx.doi.org/10.1016/0040-9383(85)90044-8},
   Doi = {10.1016/0040-9383(85)90044-8},
   Key = {fds287253}
}

@article{fds287269,
   Author = {Duchamp, T and Hain, RM},
   Title = {Primitive elements in rings of holomorphic
             functions.},
   Journal = {Journal Fur Die Reine Und Angewandte Mathematik},
   Volume = {1984},
   Number = {346},
   Pages = {199-220},
   Publisher = {WALTER DE GRUYTER GMBH},
   Year = {1984},
   ISSN = {0075-4102},
   url = {http://dx.doi.org/10.1515/crll.1984.346.199},
   Doi = {10.1515/crll.1984.346.199},
   Key = {fds287269}
}

@article{fds320236,
   Author = {HAIN, RM},
   Title = {ITERATED INTEGRALS AND HOMOTOPY PERIODS},
   Journal = {Memoirs of the American Mathematical Society},
   Volume = {47},
   Number = {291},
   Pages = {1-98},
   Year = {1984},
   Key = {fds320236}
}

@article{fds320461,
   Author = {Hain, R},
   Title = {The de Rham homotopy theory of complex algebraic
             varieties},
   Year = {1984},
   Key = {fds320461}
}

@article{fds287221,
   Author = {Hain, RM},
   Title = {Twisting Cochains and Duality Between Minimal Algebras and
             Minimal Lie Algebras},
   Journal = {Transactions of the American Mathematical
             Society},
   Volume = {277},
   Pages = {397-411},
   Year = {1983},
   ISSN = {0002-9947},
   url = {http://dx.doi.org/10.2307/1999363},
   Doi = {10.2307/1999363},
   Key = {fds287221}
}

@article{fds287220,
   Author = {Hain, RM},
   Title = {Iterated Integrals, Minimal Models and Rational Homotopy
             Theory},
   Year = {1980},
   Key = {fds287220}
}

@article{fds287219,
   Author = {Hain, RM},
   Title = {A Characterization of Smooth Functions Defined on a Banach
             Space},
   Journal = {Proceedings of the American Mathematical
             Society},
   Volume = {77},
   Pages = {63-67},
   Year = {1979},
   ISSN = {0002-9939},
   url = {http://dx.doi.org/10.2307/2042717},
   Doi = {10.2307/2042717},
   Key = {fds287219}
}

@article{fds287218,
   Author = {Eades, P and Hain, RM},
   Title = {On Circulant Weighing Matrices},
   Journal = {Ars Combinatoria},
   Volume = {2},
   Pages = {265-284},
   Year = {1976},
   ISSN = {0381-7032},
   Key = {fds287218}
}

@article{fds9675,
   Author = {Richard M. Hain},
   Title = {Moduli of Riemann Surfaces, Transcendental
             Aspects},
   Journal = {Moduli Spaces in Algebraic Geometry, ICTP Lecture Notes 1,
             L. Gottsche editor, 2000, 293--353},
   url = {http://arxiv.org/abs/math/0003144},
   Key = {fds9675}
}

@article{fds8872,
   Author = {Richard M. Hain},
   Title = {Classical Polylogarithms},
   Journal = {Motives, Proc. Symp. Pure Math. 55 part 2 (1994),
             3--42},
   Key = {fds8872}
}

@article{fds8846,
   Author = {Richard M. Hain},
   Title = {Algebraic cycles and variations of mixed Hodge
             structure},
   Journal = {Complex Geometry and Lie Theory, Proc. Symp. Pure Math, 53,
             (1991), 175--221},
   Key = {fds8846}
}

@article{fds8855,
   Author = {Richard M. Hain},
   Title = {The de Rham homotopy theory of complex algebraic varieties
             I},
   Journal = {Journal of K-Theory 1 (1987), 271--324},
   url = {http://www.math.duke.edu/faculty/hain/papers/dht1.pdf},
   Key = {fds8855}
}

@article{fds8856,
   Author = {Richard M. Hain},
   Title = {The de Rham homotopy theory of complex algebraic varieties
             II},
   Journal = {Journal of K-Theory 1 (1987), 481--497},
   url = {http://www.math.duke.edu/faculty/hain/papers/dht2.pdf},
   Key = {fds8856}
}

@article{fds8870,
   Author = {Peter Eades and Richard M. Hain},
   Title = {On circulant weighting matrices},
   Journal = {Ars Combinatoria, 2 (1976), 265--284},
   Key = {fds8870}
}


%% Other   
@misc{fds218732,
   Author = {R.M. Hain},
   Title = {The de Rham homotopy theory of complex algebraic varieties
             (unpublished version)},
   Year = {1984},
   url = {http://www.math.duke.edu/faculty/hain/papers/big_red.pdf},
   Key = {fds218732}
}

 

dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320