%% Books
@book{fds306181,
Author = {Benson Farb and Richard Hain and Eduard Looijenga},
Title = {Moduli Spaces of Riemann Surfaces},
Volume = {20},
Series = {IAS/Park City Mathematics Series},
Pages = {x+356 pages},
Publisher = {American Mathematical Society, Providence, RI; Institute for
Advanced Study (IAS), Princeton, NJ},
Editor = {Farb, B and Hain, R and Looijenga, E},
Year = {2013},
ISBN = {9780821898871},
url = {http://www.ams.org/bookstoregetitem/item=PCMS20},
Key = {fds306181}
}
@book{fds306182,
Author = {ShiingShen Chern and Lei Fu and Richard M.
Hain},
Title = {Contemporary Trends in Algebraic Geometry and Algebraic
Topology},
Volume = {5},
Pages = {viii+266 pages},
Publisher = {World Scientific Publishing Co. Pte. Ltd.},
Editor = {Chern, SS and Fu, L and Hain, R},
Year = {2002},
ISBN = {9810249543},
url = {http://www.wspc.com.sg/books/mathematics/4966.html},
Doi = {10.1142/9789812777416},
Key = {fds306182}
}
@book{fds306184,
Author = {CarlFriedrich Bodigheimer and Richard M. Hain},
Title = {Mapping Class Groups and Moduli Spaces of Riemann
Surfaces},
Volume = {150},
Pages = {xx+372xx+372},
Publisher = {American Mathematical Society},
Editor = {Bödigheimer, CF and Hain, R},
Year = {1993},
ISBN = {9780821851678},
url = {http://dx.doi.org/10.1090/conm/150},
Doi = {10.1090/conm/150},
Key = {fds306184}
}
@book{fds306185,
Author = {, },
Title = {Chen Memorial Volume},
Journal = {Illinois Journal of Mathematics},
Volume = {34},
Editor = {Hain, R and Tondeur, P},
Year = {1990},
Key = {fds306185}
}
@book{fds287237,
Author = {Hain, RM},
Title = {Iterated Integrals and Homotopy Periods},
Pages = {iv98},
Publisher = {American Mathematical Society},
Year = {1984},
url = {http://dx.doi.org/10.1090/memo/0291},
Doi = {10.1090/memo/0291},
Key = {fds287237}
}
%% Papers Published
@article{fds337126,
Author = {Brown, F and Hain, R},
Title = {Algebraic de Rham theory for weakly holomorphic modular
forms of level one},
Journal = {Algebra & Number Theory},
Volume = {12},
Number = {3},
Pages = {723750},
Year = {2018},
url = {http://dx.doi.org/10.2140/ant.2018.12.723},
Doi = {10.2140/ant.2018.12.723},
Key = {fds337126}
}
@article{fds287213,
Author = {Arapura, D and Dimca, A and Hain, R},
Title = {On the fundamental groups of normal varieties},
Journal = {Communications in Contemporary Mathematics},
Volume = {18},
Number = {04},
Pages = {15500651550065},
Year = {2016},
Month = {August},
ISSN = {02191997},
url = {http://dx.doi.org/10.1142/S0219199715500650},
Doi = {10.1142/S0219199715500650},
Key = {fds287213}
}
@article{fds324840,
Author = {Hain, R},
Title = {Notes on the Universal Elliptic KZB Equation},
Journal = {Pure and Applied Mathematics Quarterly},
Volume = {12},
Number = {2},
Publisher = {International Press},
Year = {2016},
Month = {July},
url = {http://arxiv.org/abs/1309.0580v3},
Abstract = {The universal elliptic KZB equation is the integrable
connection on the provector bundle over M_{1,2} whose fiber
over the point corresponding to the elliptic curve E and a
nonzero point x of E is the unipotent completion of
\pi_1(E{0},x). This was written down independently by
Calaque, Enriquez and Etingof (arXiv:math/0702670), and by
Levin and Racinet (arXiv:math/0703237). It generalizes the
KZequation in genus 0. These notes are in four parts. The
first two parts provide a detailed exposition of this
connection (following LevinRacinet); the third is a
leisurely exploration of the connection in which, for
example, we compute the limit mixed Hodge structure on the
unipotent fundamental group of the Tate curve minus its
identity. In the fourth part we elaborate on ideas of Levin
and Racinet and explicitly compute the connection over the
moduli space of elliptic curves with a nonzero abelian
differential, showing that it is defined over
Q.},
Key = {fds324840}
}
@article{fds320302,
Author = {Hain, R},
Title = {The Hodgede Rham theory of modular groups},
Volume = {427},
Pages = {422514},
Booktitle = {Recent Advances in Hodge Theory Period Domains, Algebraic
Cycles, and Arithmetic},
Publisher = {Cambridge University Press},
Editor = {Kerr, M and Pearlstein, G},
Year = {2016},
Month = {January},
ISBN = {110754629X},
Key = {fds320302}
}
@article{fds287214,
Author = {Hain, R},
Title = {Genus 3 mapping class groups are not Kähler},
Journal = {Journal of Topology},
Volume = {8},
Number = {1},
Pages = {213246},
Publisher = {Oxford University Press (OUP)},
Year = {2015},
Month = {March},
ISSN = {17538416},
url = {http://arxiv.org/abs/1305.2052},
Doi = {10.1112/jtopol/jtu020},
Key = {fds287214}
}
@article{fds287267,
Author = {Dimca, A and Hain, R and Papadima, S},
Title = {The Abelianization of the Johnson Kernel},
Journal = {Journal of the European Mathematical Society},
Volume = {16},
Number = {4},
Pages = {805822},
Year = {2014},
ISSN = {14359855},
url = {http://arxiv.org/abs/1101.1392},
Doi = {10.4171/JEMS/447},
Key = {fds287267}
}
@article{fds287265,
Author = {Hain, R},
Title = {Remarks on nonabelian cohomology of proalgebraic
groups},
Journal = {Journal of Algebraic Geometry},
Volume = {22},
Number = {3},
Pages = {581598},
Year = {2013},
Month = {March},
ISSN = {10563911},
url = {http://dx.doi.org/10.1090/S105639112013005986},
Doi = {10.1090/S105639112013005986},
Key = {fds287265}
}
@article{fds287242,
Author = {Hain, R},
Title = {Normal Functions and the Geometry of Moduli Spaces of
Curves},
Volume = {1},
Pages = {527578},
Booktitle = {Handbook of Moduli},
Publisher = {International Press},
Editor = {Farkas, G and Morrison, I},
Year = {2013},
url = {http://arxiv.org/abs/1102.4031},
Key = {fds287242}
}
@article{fds287264,
Author = {Hain, R},
Title = {Rational points of universal curves},
Journal = {Journal of the American Mathematical Society},
Volume = {24},
Number = {3},
Pages = {709709},
Year = {2011},
Month = {September},
ISSN = {08940347},
url = {http://dx.doi.org/10.1090/S089403472011006930},
Doi = {10.1090/S089403472011006930},
Key = {fds287264}
}
@article{fds287243,
Author = {Hain, R},
Title = {Lectures on Moduli Spaces of Elliptic Curves},
Volume = {16},
Series = {Advanced Lectures in Mathematics},
Number = {16},
Pages = {95166},
Booktitle = {Transformation Groups and Moduli Spaces of Curves: Advanced
Lectures in Mathematics},
Publisher = {Higher Education Press},
Address = {Beijing},
Editor = {Ji, L and Yau, ST},
Year = {2010},
ISBN = {9787040298420},
url = {http://arxiv.org/abs/0812.1803},
Key = {fds287243}
}
@article{fds287268,
Author = {Hain, R and Matsumoto, M},
Title = {Relative proℓ completions of mapping class
groups},
Journal = {Journal of Algebra},
Volume = {321},
Number = {11},
Pages = {33353374},
Year = {2009},
Month = {June},
ISSN = {00218693},
url = {http://dx.doi.org/10.1016/j.jalgebra.2009.02.014},
Doi = {10.1016/j.jalgebra.2009.02.014},
Key = {fds287268}
}
@article{fds287244,
Author = {Hain, R},
Title = {Relative Weight Filtrations on Completions of Mapping Class
Groups},
Volume = {52},
Series = {Advanced Studies in Pure Mathematics},
Pages = {309368},
Booktitle = {Groups of Diffeomorphisms: Advanced Studies in Pure
Mathematics},
Publisher = {Mathematical Society of Japan},
Year = {2008},
url = {http://arxiv.org/abs/0802.0814},
Key = {fds287244}
}
@article{fds287245,
Author = {Hain, R},
Title = {Finiteness and Torelli Spaces},
Volume = {74},
Series = {Proc. Symp. Pure Math. 74},
Pages = {5770},
Booktitle = {Problems on Mapping Class Groups and Related
Topics},
Publisher = {Amererican Mathematics Societty},
Editor = {Farb, B},
Year = {2006},
url = {http://dx.doi.org/10.1090/pspum/074/2264131},
Doi = {10.1090/pspum/074/2264131},
Key = {fds287245}
}
@article{fds287270,
Author = {Kim, M and Hain, RM},
Title = {The HyodoKato theorem for rational homotopy
types},
Journal = {Mathematical Research Letters},
Volume = {12},
Number = {23},
Pages = {155169},
Year = {2005},
ISSN = {10732780},
url = {http://hdl.handle.net/10161/8976 Duke open
access},
Abstract = {The HyodoKato theorem relates the De Rham cohomology of a
variety over a local field with semistable reduction to the
log crystalline cohomology of the special fiber. In this
paper we prove an analogue for rational homotopy types. In
particular, this gives a comparison isomorphism for
fundamental groups.},
Key = {fds287270}
}
@article{fds287271,
Author = {Hain, R and Matsumoto, M},
Title = {Galois Actions on Fundamental Groups of Curves and the Cycle
$CC^$},
Journal = {Journal of the Institute of Mathematics of
Jussieu},
Volume = {4},
Pages = {363403},
Publisher = {Cambridge University Press (CUP): STM Journals},
Year = {2005},
ISSN = {14753030},
url = {http://dx.doi.org/10.1017/S1474748005000095},
Doi = {10.1017/S1474748005000095},
Key = {fds287271}
}
@article{fds287273,
Author = {Kim, M and Hain, RM},
Title = {A De Rham–Witt approach to crystalline rational homotopy
theory},
Journal = {Compositio Mathematica},
Volume = {140},
Number = {05},
Pages = {12451276},
Year = {2004},
Month = {September},
ISSN = {0010437X},
url = {http://hdl.handle.net/10161/8977 Duke open
access},
Doi = {10.1112/S0010437X04000442},
Key = {fds287273}
}
@article{fds287272,
Author = {Hain, R and Reed, D},
Title = {On the arakelov geometry of moduli spaces of
curves},
Journal = {Journal of Differential Geometry},
Volume = {67},
Number = {2},
Pages = {195228},
Year = {2004},
Month = {Summer},
ISSN = {0022040X},
url = {http://arxiv.org/abs/math/0211097},
Abstract = {In this paper we compute the asymptotics of the natural
metric on the line bundle over the moduli space M g
associated to the algebraic cycle C  C  in the jacobian
JacC of a smooth projective curve C of genus g ≥ 3. The
asymptotics are related to the structure of the mapping
class group of a genus g surface.},
Key = {fds287272}
}
@article{fds287274,
Author = {Hain, R and Matsumoto, M},
Title = {Weighted completion of galois groups and galois actions on
the fundamental group of ℙ^{1} {0, 1,
∞}},
Journal = {Compositio Mathematica},
Volume = {139},
Number = {2},
Pages = {119167},
Year = {2004},
ISSN = {0010437X},
url = {http://dx.doi.org/10.1023/B:COMP.0000005077.42732.93},
Abstract = {Fix a prime number l. We prove a conjecture stated by Ihara,
which he attributes to Deligne, about the action of the
absolute Galois group on the prol completion of the
fundamental group of the thrice punctured projective line.
Similar techniques are also used to prove part of a
conjecture of Goneharov, also about the action of the
absolute Galois group on the fundamental group of the thrice
punctured projective line. The main technical tool is the
weighted completion of a profinite group with respect to a
reductive representation (and other appropriate data). ©
2003 Kluwer Academic Publishers.},
Doi = {10.1023/B:COMP.0000005077.42732.93},
Key = {fds287274}
}
@article{fds287246,
Author = {Hain, R},
Title = {Periods of Limit Mixed Hodge Structures},
Pages = {113133},
Booktitle = {CDM 2002: Current Developments in Mathematics in Honor of
Wilfried Schmid & George Lusztig},
Publisher = {International Press},
Editor = {Jerison, D and Lustig, G and Mazur, B and Mrowka, T and Schmid, W and Stanley, R and Yau, ST},
Year = {2003},
url = {http://arxiv.org/abs/math/0305090},
Key = {fds287246}
}
@article{fds287275,
Author = {Hain, R and Matsumoto, M},
Title = {Tannakian Fundamental Groups Associated to Galois
Groups},
Volume = {41},
Pages = {183216},
Booktitle = {Galois Groups and Fundamental Groups},
Publisher = {CAMBRIDGE UNIV PRESS},
Editor = {Schneps, L},
Year = {2003},
url = {http://arxiv.org/abs/math/0010210},
Key = {fds287275}
}
@article{fds287216,
Author = {Hain, R and Tondeur, P},
Title = {The Life and Work of KuoTsai Chen [ MR1046561
(91b:01072)]},
Volume = {5},
Pages = {251266},
Booktitle = {Contemporary trends in algebraic geometry and algebraic
topology (Tianjin, 2000)},
Publisher = {World Sci. Publ., River Edge, NJ},
Year = {2002},
url = {http://dx.doi.org/10.1142/9789812777416_0012},
Doi = {10.1142/9789812777416_0012},
Key = {fds287216}
}
@article{fds287247,
Author = {Hain, R},
Title = {Iterated Integrals and Algebraic Cycles: Examples and
Prospects},
Volume = {5},
Pages = {55118},
Booktitle = {Contemporary Tends in Algebraic Geometry and Algebraic
Topology},
Publisher = {World Scientific Publishing},
Year = {2002},
url = {http://dx.doi.org/10.1142/9789812777416_0004},
Doi = {10.1142/9789812777416_0004},
Key = {fds287247}
}
@article{fds287263,
Author = {Hain, R},
Title = {The Rational Cohomology Ring of the Moduli Space of Abelian
$3$folds},
Journal = {Mathematical Research Letters},
Volume = {9},
Number = {4},
Pages = {473491},
Year = {2002},
url = {http://dx.doi.org/10.4310/MRL.2002.v9.n4.a7},
Doi = {10.4310/MRL.2002.v9.n4.a7},
Key = {fds287263}
}
@article{fds287262,
Author = {Hain, R and Reed, D},
Title = {Geometric proofs of some results of Morita},
Journal = {Journal of Algebraic Geometry},
Volume = {10},
Number = {2},
Pages = {199217},
Year = {2001},
url = {http://arxiv.org/abs/math/9810054},
Key = {fds287262}
}
@article{fds287238,
Author = {Dupont, J and Hain, R and Zucker, S},
Title = {Regulators and Characteristic Classes of Flat
Bundles},
Volume = {24},
Pages = {4792},
Booktitle = {The arithmetic and geometry of algebraic cycles (Banff, AB,
1998)},
Publisher = {American Mathematical Society},
Year = {2000},
url = {http://arxiv.org/abs/alggeom/9202023},
Key = {fds287238}
}
@article{fds287251,
Author = {Hain, R},
Title = {Moduli of Riemann Surfaces, Transcendental Aspects, Moduli
Spaces},
Volume = {1},
Pages = {293353},
Booktitle = {ALgebraic Geometry},
Publisher = {Abdus Salam Int. Cent. Theoret. Phys.},
Editor = {Gottsche, L},
Year = {2000},
Key = {fds287251}
}
@article{fds287248,
Author = {Hain, R},
Title = {Locally Symmetric Families of Curves and
Jacobians},
Pages = {91108},
Booktitle = {Moduli of Curves and Abelian Varieties},
Publisher = {Friedr. Vieweg},
Editor = {Faber, C and Looijenga, E},
Year = {1999},
url = {http://arxiv.org/abs/math/9803028},
Key = {fds287248}
}
@article{fds287261,
Author = {Hain, RM},
Title = {The Hodge De Rham theory of relative Malcev
completion},
Journal = {Annales Scientifiques de l'Ecole Normale
Superieure},
Volume = {31},
Number = {1},
Pages = {4792},
Year = {1998},
url = {http://archive.numdam.org/article/ASENS_1998_4_31_1_47_0.pdf},
Abstract = {Suppose that X is a smooth manifold and ρ : π1 (X,N) → S
is a representation of the fundamental group of X into a
real reductive group with Zariski dense image. To such data
one can associate the Malcev completion G of π1(X,x)
relative to ρ. In this paper we generalize Chen's iterated
integrals and show that the H0 of a suitable complex of
these iterated integrals is the coordinate ring of G. This
is used to show that if X is a complex algebraic manifold
and ρ is the monodromy representation of a variation of
Hodge structure over X, then the coordinate ring of G has a
canonical mixed Hodge structure. © Elsevier,
Paris.},
Key = {fds287261}
}
@article{fds287260,
Author = {Hain, R},
Title = {Infinitesimal presentations of the Torelli
groups},
Journal = {Journal of the American Mathematical Society},
Volume = {10},
Number = {3},
Pages = {597651},
Year = {1997},
Month = {July},
url = {http://www.ams.org/jams/19971003/},
Key = {fds287260}
}
@article{fds287236,
Author = {Freedman, M and Hain, R and Teichner, P},
Title = {Betti Number Estimates for Nilpotent Groups},
Volume = {5},
Pages = {413434},
Booktitle = {Fields Medallists’ Lectures},
Publisher = {World Science},
Editor = {Atiyah, and Iagolnitzer},
Year = {1997},
url = {http://dx.doi.org/10.1142/9789812385215_0045},
Doi = {10.1142/9789812385215_0045},
Key = {fds287236}
}
@article{fds287239,
Author = {Hain, R and Looijenga, E},
Title = {Mapping Class Groups and Moduli Spaces of
Curves},
Volume = {62},
Pages = {97142},
Booktitle = {Algebraic geometry—Santa Cruz 1995},
Publisher = {American Mathematical Society},
Year = {1997},
url = {http://arxiv.org/abs/alggeom/9607004},
Key = {fds287239}
}
@article{fds287257,
Author = {Hain, RM},
Title = {The existence of higher logarithms},
Journal = {Compositio Mathematica},
Volume = {100},
Number = {3},
Pages = {247276},
Year = {1996},
ISSN = {0010437X},
url = {http://arxiv.org/abs/alggeom/9308005},
Abstract = {In this paper we establish the existence of all higher
logarithms as Deligne cohomology classes in a sense slightly
weaker than that of [13, Sect. 12], but in a sense that
should be strong enough for defining Chem classes on the
algebraic Ktheory of complex algebraic varieties. In
particular, for each integer p ≥ 1, we construct a
multivalued holomorphic function on a Zariski open subset of
the self dual grassmannian of pplanes in ℂ2p which
satisfies a canonical 2p + 1 term functional equation. The
key new technical ingredient is the construction of a
topology on the generic part of each Grassmannian which is
coarser than the Zariski topology and where each open
contains another which is both a K (π, 1) and a rational K
(π, 1). © 1996 Kluwer Academic Publishers.},
Key = {fds287257}
}
@article{fds287258,
Author = {Hain, RM and Yang, J},
Title = {Real Grassmann polylogarithms and Chern classes},
Journal = {Mathematische Annalen},
Volume = {304},
Number = {1},
Pages = {157201},
Year = {1996},
url = {http://arxiv.org/abs/alggeom/9407010},
Key = {fds287258}
}
@article{fds287259,
Author = {Elizondo, EJ and Hain, RM},
Title = {Chow varieties of Abelian varieties},
Journal = {Boletin de la Sociedad Matematica Mexicana},
Volume = {2},
Number = {2},
Pages = {9599},
Year = {1996},
Abstract = {We prove that if A is an abelian variety over ℂ acting
algebraically on a complex projective variety X, then the
Euler characteristic of X equals the Euler characteristic of
the fixed point set XA. We obtain that if A is an abelian
variety and X is a principal Abundle over a projective
variety Y, then the Euler characteristic of a Chow variety
in X equals either zero or the Euler characteristic of a
Chow variety of Y.},
Key = {fds287259}
}
@article{fds287240,
Author = {Hain, RM},
Title = {Torelli Groups and Geometry of Moduli Spaces of
Curves},
Volume = {28},
Pages = {97143},
Booktitle = {Current Topics in Complex Algebraic Geometry},
Publisher = {CAMBRIDGE UNIV PRESS},
Editor = {Clements, CH and Kollar, J},
Year = {1995},
url = {http://www.msri.org/publications/books/Book28/},
Key = {fds287240}
}
@article{fds287249,
Author = {Hain, RM},
Title = {Classical Polylogarithms, Motives},
Volume = {55},
Pages = {342},
Booktitle = {Motives (Seattle, WA, 1991)},
Publisher = {American Mathematical Society},
Year = {1994},
Key = {fds287249}
}
@article{fds287241,
Author = {Hain, RM},
Title = {Completions of Mapping Class Groups and the Cycle
CC},
Journal = {Surveys on Discrete and Computational Geometry: Twenty Years
Later},
Volume = {150},
Pages = {75105},
Publisher = {American Mathematical Society},
Year = {1993},
ISSN = {02714132},
url = {http://dx.doi.org/10.1090/conm/150/01287},
Doi = {10.1090/conm/150/01287},
Key = {fds287241}
}
@article{fds287250,
Author = {HAIN, RM},
Title = {NILMANIFOLDS AS LINKS OF ISOLATED SINGULARITIES},
Journal = {Compositio Mathematica},
Volume = {84},
Number = {1},
Pages = {9199},
Year = {1992},
Month = {October},
ISSN = {0010437X},
url = {http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:A1992JR84500008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=47d3190e77e5a3a53558812f597b0b92},
Key = {fds287250}
}
@article{fds287234,
Author = {Hain, RM},
Title = {Algebraic Cycles and Variations of Mixed Hodge Structure,
Complex Geometry and Lie Theory},
Volume = {53},
Pages = {175221},
Booktitle = {Complex geometry and Lie theory (Sundance, UT,
1989)},
Publisher = {American Mathematical Society},
Year = {1991},
url = {http://dx.doi.org/10.1090/pspum/053/1141202},
Doi = {10.1090/pspum/053/1141202},
Key = {fds287234}
}
@article{fds287235,
Author = {Hain, RM and MacPherson, R},
Title = {Introduction to Higher Logarithms},
Volume = {37},
Pages = {337353},
Booktitle = {Properties of Polylogarithms},
Publisher = {American Mathematical Societ},
Editor = {Lewin, L},
Year = {1991},
url = {http://dx.doi.org/10.1090/surv/037/15},
Doi = {10.1090/surv/037/15},
Key = {fds287235}
}
@article{fds287233,
Author = {Hain, R},
Title = {Biextensions and heights associated to curves of odd
genus},
Journal = {Duke Mathematical Journal},
Volume = {61},
Number = {3},
Pages = {859898},
Year = {1990},
Month = {December},
ISSN = {00127094},
url = {http://dx.doi.org/10.1215/S0012709490061332},
Doi = {10.1215/S0012709490061332},
Key = {fds287233}
}
@article{fds287231,
Author = {Hain, RM and MacPherson, R},
Title = {Higher logarithms},
Journal = {Illinois Journal of Mathematics},
Volume = {34},
Number = {2},
Pages = {392475},
Year = {1990},
Month = {January},
ISSN = {00192082},
url = {http://projecteuclid.org/euclid.ijm/1255988272},
Key = {fds287231}
}
@article{fds287232,
Author = {HAIN, R and TONDEUR, P},
Title = {THE LIFE AND WORK OF CHEN,KUO,TSAI},
Journal = {Illinois Journal of Mathematics},
Volume = {34},
Number = {2},
Pages = {175190},
Year = {1990},
ISSN = {00192082},
url = {http://projecteuclid.org/euclid.ijm/1255988263},
Key = {fds287232}
}
@article{fds287255,
Author = {Durfee, AH and Hain, RM},
Title = {Mixed Hodge Structures on the Homotopy of
Links},
Journal = {Mathematische Annalen},
Volume = {280},
Pages = {6983},
Year = {1988},
ISSN = {00255831},
url = {http://dx.doi.org/10.1007/BF01474182},
Doi = {10.1007/BF01474182},
Key = {fds287255}
}
@article{fds287225,
Author = {Hain, RM and Zucker, S},
Title = {A Guide to Unipotent Variations of Mixed Hodge
Structure},
Journal = {Proceedings of the U.S. Spain Workshop},
Volume = {1246},
Pages = {92106},
Publisher = {Springer Verlag},
Year = {1987},
url = {http://dx.doi.org/10.1007/BFb0077532},
Doi = {10.1007/BFb0077532},
Key = {fds287225}
}
@article{fds287226,
Author = {Hain, RM},
Title = {Higher Albanese Manifolds},
Journal = {Proceedings of the U.S. Spain Workshop},
Volume = {1246},
Pages = {8491},
Publisher = {Springer Verlag},
Year = {1987},
url = {http://dx.doi.org/10.1007/BFb0077531},
Doi = {10.1007/BFb0077531},
Key = {fds287226}
}
@article{fds287227,
Author = {Hain, RM},
Title = {Iterated Integrals and Mixed Hodge Structures on Homotopy
Groups},
Journal = {Proceedings of the U.S. Spain Workshop},
Volume = {1246},
Pages = {7583},
Publisher = {Springer Verlag},
Year = {1987},
url = {http://dx.doi.org/10.1007/BFb0077530},
Doi = {10.1007/BFb0077530},
Key = {fds287227}
}
@article{fds287228,
Author = {Hain, RM},
Title = {The Geometry of the Mixed Hodge Structure on the Fundamental
Group},
Volume = {46},
Pages = {247282},
Booktitle = {Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine,
1985)},
Publisher = {American Mathematical Society},
Year = {1987},
Key = {fds287228}
}
@article{fds287229,
Author = {Hain, RM and Zucker, S},
Title = {Truncations of Mixed Hodge Complexes},
Journal = {Proceedings of the U.S. Spain Workshop},
Volume = {1246},
Pages = {107114},
Publisher = {SpringVerlag},
Year = {1987},
url = {http://dx.doi.org/10.1007/BFb0077533},
Doi = {10.1007/BFb0077533},
Key = {fds287229}
}
@article{fds287230,
Author = {Carlson, JA and Hain, RM},
Title = {Extensions of Variations of Mixed Hodge Structure},
Pages = {3965},
Publisher = {Theorie de Hodge},
Year = {1987},
Key = {fds287230}
}
@article{fds287252,
Author = {Hain, RM and Zucker, S},
Title = {Unipotent variations of mixed Hodge structure},
Journal = {Inventiones Mathematicae},
Volume = {88},
Number = {1},
Pages = {83124},
Year = {1987},
ISSN = {00209910},
url = {http://dx.doi.org/10.1007/BF01405093},
Doi = {10.1007/BF01405093},
Key = {fds287252}
}
@article{fds287254,
Author = {Hain, RM},
Title = {The de rham homotopy theory of complex algebraic varieties
I},
Journal = {KTheory},
Volume = {1},
Number = {3},
Pages = {271324},
Year = {1987},
ISSN = {09203036},
url = {http://dx.doi.org/10.1007/BF00533825},
Abstract = {In this paper we use Chen's iterated integrals to put a
mixed Hodge structure on the homotopy Lie algebra of an
arbitrary complex algebraic variety, generalizing work of
Deligne and Morgan. Similar techniques are used to put a
mixed Hodge structure on other topological invariants
associated with varieties that are accessible to rational
homotopy theory such as the cohomology of the free loopspace
of a simply connected variety. © 1987 D. Reidel Publishing
Company.},
Doi = {10.1007/BF00533825},
Key = {fds287254}
}
@article{fds287256,
Author = {Hain, RM},
Title = {The de Rham homotopy theory of complex algebraic varieties
II},
Journal = {KTheory},
Volume = {1},
Number = {5},
Pages = {481497},
Year = {1987},
ISSN = {09203036},
url = {http://dx.doi.org/10.1007/BF00536980},
Abstract = {We show that the local system of homotopy groups, associated
with a topologically locally trivial family of smooth
pointed varieties, underlies a good variation of mixed Hodge
structure. In particular we show that there is a limit mixed
Hodge structure on homotopy associated with a degeneration
of such varieties. © 1987 Kluwer Academic
Publishers.},
Doi = {10.1007/BF00536980},
Key = {fds287256}
}
@article{fds287223,
Author = {Hain, RM},
Title = {On the indecomposable elements of the bar
construction},
Journal = {Proceedings of the American Mathematical
Society},
Volume = {98},
Number = {2},
Pages = {312312},
Year = {1986},
Month = {February},
ISSN = {00029939},
url = {http://dx.doi.org/10.2307/2045704},
Abstract = {An explicit formula for a canonical splitting s:
Qℬ(ℰ.)⟶ℬ(ℰ.) of the projection
ℬ(ℰ.)⟶Qℬ(ℰ.) of the bar construction on a
commutative d.g. algebraℰ.onto its indecomposables is
given. We prove that s induces a d.g. algebra isomorphism
Λ(Qℬ(ℰ.))⟶ℬ(ℰ.) and that H(Qℬ(ℰ.)) is
isomorphic with QH(ℬ(ℰ.)). © 1986 American Mathematical
Society.},
Doi = {10.1090/S00029939198608540395},
Key = {fds287223}
}
@article{fds287222,
Author = {Hain, RM},
Title = {Mixed Hodge structures on homotopy groups},
Journal = {Bulletin of the American Mathematical Society},
Volume = {14},
Number = {1},
Pages = {111115},
Year = {1986},
Month = {January},
ISSN = {02730979},
url = {http://dx.doi.org/10.1090/S027309791986154108},
Doi = {10.1090/S027309791986154108},
Key = {fds287222}
}
@article{fds287224,
Author = {Hain, RM},
Title = {On a generalization of Hilbert's 21st problem},
Journal = {Annales Scientifiques De L’École Normale
Supérieure},
Volume = {19},
Number = {4},
Pages = {609627},
Year = {1986},
ISSN = {00129593},
url = {http://www.numdam.org/item?id=ASENS_1986_4_19_4_609_0},
Doi = {10.24033/asens.1520},
Key = {fds287224}
}
@article{fds287253,
Author = {Hain, RM},
Title = {Iterated integrals, intersection theory and link
groups},
Journal = {Topology},
Volume = {24},
Number = {1},
Pages = {4566},
Year = {1985},
ISSN = {00409383},
url = {http://dx.doi.org/10.1016/00409383(85)900448},
Doi = {10.1016/00409383(85)900448},
Key = {fds287253}
}
@article{fds287269,
Author = {Duchamp, T and Hain, RM},
Title = {Primitive Elements in Rings of Holomorphic
Functions},
Journal = {Journal Fur Die Reine Und Angewandte Mathematik},
Volume = {346},
Pages = {199220},
Year = {1984},
ISSN = {00754102},
url = {http://dx.doi.org/10.1515/crll.1984.346.199},
Doi = {10.1515/crll.1984.346.199},
Key = {fds287269}
}
@article{fds320236,
Author = {HAIN, RM},
Title = {ITERATED INTEGRALS AND HOMOTOPY PERIODS},
Journal = {Memoirs of the American Mathematical Society},
Volume = {47},
Number = {291},
Pages = {198},
Year = {1984},
Key = {fds320236}
}
@article{fds287221,
Author = {Hain, RM},
Title = {Twisting Cochains and Duality Between Minimal Algebras and
Minimal Lie Algebras},
Journal = {Transactions of the American Mathematical
Society},
Volume = {277},
Pages = {397411},
Year = {1983},
ISSN = {00029947},
url = {http://dx.doi.org/10.2307/1999363},
Doi = {10.2307/1999363},
Key = {fds287221}
}
@article{fds287220,
Author = {Hain, RM},
Title = {Iterated Integrals, Minimal Models and Rational Homotopy
Theory},
Year = {1980},
Key = {fds287220}
}
@article{fds287219,
Author = {Hain, RM},
Title = {A Characterization of Smooth Functions Defined on a Banach
Space},
Journal = {Proceedings of the American Mathematical
Society},
Volume = {77},
Pages = {6367},
Year = {1979},
ISSN = {00029939},
url = {http://dx.doi.org/10.2307/2042717},
Doi = {10.2307/2042717},
Key = {fds287219}
}
@article{fds287218,
Author = {Eades, P and Hain, RM},
Title = {On Circulant Weighing Matrices},
Journal = {Ars Combinatoria},
Volume = {2},
Pages = {265284},
Year = {1976},
ISSN = {03817032},
Key = {fds287218}
}
@article{fds9675,
Author = {Richard M. Hain},
Title = {Moduli of Riemann Surfaces, Transcendental
Aspects},
Journal = {Moduli Spaces in Algebraic Geometry, ICTP Lecture Notes 1,
L. Gottsche editor, 2000, 293353},
url = {http://arxiv.org/abs/math/0003144},
Key = {fds9675}
}
@article{fds8872,
Author = {Richard M. Hain},
Title = {Classical Polylogarithms},
Journal = {Motives, Proc. Symp. Pure Math. 55 part 2 (1994),
342},
Key = {fds8872}
}
@article{fds8846,
Author = {Richard M. Hain},
Title = {Algebraic cycles and variations of mixed Hodge
structure},
Journal = {Complex Geometry and Lie Theory, Proc. Symp. Pure Math, 53,
(1991), 175221},
Key = {fds8846}
}
@article{fds8855,
Author = {Richard M. Hain},
Title = {The de Rham homotopy theory of complex algebraic varieties
I},
Journal = {Journal of KTheory 1 (1987), 271324},
url = {http://www.math.duke.edu/faculty/hain/papers/dht1.pdf},
Key = {fds8855}
}
@article{fds8856,
Author = {Richard M. Hain},
Title = {The de Rham homotopy theory of complex algebraic varieties
II},
Journal = {Journal of KTheory 1 (1987), 481497},
url = {http://www.math.duke.edu/faculty/hain/papers/dht2.pdf},
Key = {fds8856}
}
@article{fds8870,
Author = {Peter Eades and Richard M. Hain},
Title = {On circulant weighting matrices},
Journal = {Ars Combinatoria, 2 (1976), 265284},
Key = {fds8870}
}
%% Papers Submitted
@article{fds320425,
Author = {Hain, R},
Title = {DeligneBeilinson Cohomology of Affine Groups},
Booktitle = {Hodge Theory and $L^2$analysis},
Publisher = {International Press},
Editor = {Ji, L},
Year = {2017},
ISBN = {1571463518},
url = {http://arxiv.org/abs/1507.03144},
Abstract = {The goal of this paper is to develop the theory of
DeligneBeilinson cohomology of affine groups with a mixed
Hodge structure. The motivation comes from Hodge theory and
the study of motives, where such groups appear. Several of
Francis Brown's period computations (arXiv:1407.5167) are
interpreted as elements of the DB cohomology of the relative
unipotent completion of $SL_2(Z)$ and their cup products.
The results in this paper are used in arXiv:1403.6443 where
they are used to prove that Pollack's quadratic relations
are motivic.},
Key = {fds320425}
}
@article{fds320426,
Author = {Hain, R and Matsumoto, M},
Title = {Universal Mixed Elliptic Motives},
Journal = {Journal of the Institute of Mathematics of
Jussieu},
Year = {2016},
url = {http://arxiv.org/abs/1512.03975},
Abstract = {In this paper we construct a Qlinear tannakian category
MEM_1 of universal mixed elliptic motives over the moduli
space M_{1,1} of elliptic curves. It contains MTM, the
category of mixed Tate motives unramified over the integers.
Each object of MEM_1 is an object of MTM endowed with an
action of SL_2(Z) that is compatible with its structure.
Universal mixed elliptic motives can be thought of as
motivic local systems over M_{1,1} whose fiber over the
tangential base point d/dq at the cusp is a mixed Tate
motive. The basic structure of the tannakian fundamental
group of MEM is determined and the lowest order terms of all
relations are found (using computations of Francis Brown),
including the arithmetic relations, which describe the
"infinitesimal Galois action". We use the presentation to
give a new and more conceptual proof of the IharaTakao
congruences.},
Key = {fds320426}
}
%% Other
@misc{fds218732,
Author = {R.M. Hain},
Title = {The de Rham homotopy theory of complex algebraic varieties
(unpublished version)},
Year = {1984},
url = {http://www.math.duke.edu/faculty/hain/papers/big_red.pdf},
Key = {fds218732}
}
