Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke





.......................

.......................


Publications of Gregory F Lawler    :chronological  combined  bibtex listing:

Books

  1. Gregory F. Lawler, Intersections of Random Walks, Birkhauser-Boston (1991, softcover edition 1996)
  2. Gregory F. Lawler, Introduction to Stochastic Processes, CRC Chapman and Hall (1995)
  3. Gregory F. Lawler and Lester N. Coyle, Lectures on Contemporary Probability, AMS Student Mathematical Library (1999)  [abs]

Papers Published

  1. Gregory F. Lawler, $L$-shapes for the logarithmic $\eta$-model for DLA in three dimensions, Seminar on Stochastic Processes, 1991, Birkh\"auser-Boston (1992), 97--122
  2. Gregory F. Lawler, A connective constant for loop-erased self-avoiding random walk, J. Appl. Prob. 20 (1983), 264-276
  3. Gregory F. Lawler, A discrete analogue of a theorem of Makarov, Combinatorics, Probability, and Computing 2 (1993), 181-200
  4. Gregory F. Lawler, A discrete stochastic integral inequality and balanced random walk in a random environment, Duke Mathematical Journal 50 (1983), 1261-1274
  5. Gregory F. Lawler, A lower bound on the growth exponent for loop-erased walk in two dimensions, ESAIM: Probability and Statistics 3 (1999),1-21
  6. Harry Kesten and Gregory F. Lawler, A necessary condition for making money from fair games, Annals of Probability 20 (1992), 855--882
  7. Gregory F. Lawler, A self-avoiding random walk, Duke Mathematical Journal 47 (1980), 655-694.
  8. Gregory F. Lawler and Alan Sokal, Bounds on the L_2 spectrum for Markov chains and Markov processes: a generalization of Cheeger's inequality, Trans. Amer. Math. Soc. 309 (1988), 557-580.
  9. Gregory F. Lawler, Cut points for simple random walk, Electronic Journal of Probability 1 (1996), #13 [~ejpecp]
  10. Gregory F. Lawler and John Sylvester, Determining resistances from boundary measurements in finite networks, SIAM Journal on Discrete Mathematics 2 (1989), 231-239
  11. J. Roerdink, K. Shuler, and Gregory F. Lawler, Diffusion in lattices with anisotropic scatterers, Journal of Statistical Physics 59 (1990) , 23--52
  12. Gregory F. Lawler, Escape probabilities for slowly recurrent sets, Probability Theory and Related Fields 94 (1992), 91-117
  13. Gregory F. Lawler, Estimates for differences and Harnack's inequality for difference operators coming from random walks with symmetric, spatially inhomogeneous increments, Proceedings of London Mathematical Society 63 (1991), 552--568
  14. Gregory F. Lawler, Expected hitting time for a random walk on a connected graph, Discrete Mathematics 61 (1986), 85-92
  15. Gregory F. Lawler, Gaussian behavior of loop-erased self-avoiding random walk in four dimensions, Duke Mathematical Journal 53 (1986), 249-270
  16. Gregory F. Lawler, Geometric and fractal properties of Brownian motion and random walk paths in two and three dimensions, Bolyai Mathematical Society Studies, 9 (1999), 219-258
  17. Gregory F. Lawler and Thomas Polaski, Harnack inequalities and difference estimates for random walks with infinite range, Journal of Theoretical Probability, 6 (1993), 781-802
  18. Gregory F. Lawler, Hausdorff dimension of cut points for Brownian motion, Electronic Journal of Probability 1 (1996), #2 [~ejpecp]
  19. Gregory F. Lawler, Maury Bramson, and David Griffeath, Internal diffusion limited aggregation, Annals of Probability 20 (1992), 2117-2140
  20. Gregory F. Lawler and Wendelin Werner, Intersection exponents for planar Brownian motion, Annals of Probability 27 (1999), 1601-1642
  21. Gregory F. Lawler, Intersection probabilities for random walks, Mathematics of Random Media, AMS Lectures in Applied Mathematics 27 (1991), 73--86
  22. Gregory F. Lawler, Intersections of random walks in four dimensions II, Comm. Math. Phys. 97 (1985), 583-594
  23. Gregory F. Lawler, Intersections of random walks with random sets, Israel Journal of Mathematics 65 (1989), 113-132
  24. Gregory F. Lawler, Intersections of simple random walks, AMS Contemporary Mathematics 41 (1985), 281-289
  25. Gregory F. Lawler, Loop-erased random walk, Perplexing Problems in Probability, Birkhauser-Boston (1999), 197--217
  26. Gregory F. Lawler, Loop-erased self-avoiding random walk and the Laplacian random walk, Journal of Physics A. 20 (1987), 4565-4568
  27. Gregory F. Lawler, Loop-erased self-avoiding random walk in two and three dimensions, Journal of Statistical Physics 50 (1988), 91-108
  28. Gregory F. Lawler, Loop-erased walks intersect infinitely often in four dimensions, Electronic Communications in Probability 3 (1998), 35-42 [~ejpecp]
  29. Gregory F. Lawler, Low density estimates for a two-state random walk in random environment, Journal of Mathematical Physics 30 (1989), 145-157
  30. Richard Durrett, Harry Kesten, and Gregory F. Lawler, Making money from fair games, Random Walks, Brownian Motion and Interacting Particle Systems, Birkh\"auser, Boston (1991), 255-267
  31. Gregory F. Lawler and Robert Vanderbei, Markov strategies for optimal control problems indexed by a partially ordered set, Annals of Prob. 11 (1983), 642-647
  32. Gregory F. Lawler, Multifractal nature of two dimensional simple random walk paths, Random Walks and Discrete Potential Theory, M. Picardello and W. Woess, ed., Cambridge University Press (1999), 231--264.
  33. Krzysztof Burdzy and Gregory F. Lawler, Non-intersection exponents for random walk and Brownian motion. Part II: Estimates and applications to a random fractal, Annals of Probability 18 (1990), 981--1009
  34. Krzysztof Burdzy and Gregory F. Lawler, Non-intersection exponents for random walk and Brownian motion. Part I: Existence and an invariance principle, Probability Theory and Related Fields 84 (1990), 393--410
  35. Gregory F. Lawler, Nonintersecting planar Brownian motions, Mathematical Physics Electronic Journal 1 (1995), #4
  36. Gregory F. Lawler, On the covering time of a disc by simple random walk in two dimensions, Seminar on Stochastic Processes, 1992, Birkh\"auser-Boston (1993), 189-208
  37. Krzysztof Burdzy, Gregory F. Lawler, and Thomas Polaski, On the critical exponent for random walk intersections, Journal of Statistical Physics { 56 (1989), 1-12
  38. Gregory F. Lawler, Oded Schramm, and Wendelin Werner, One-arm exponent for critical 2D percolation, Electronic J. of Probability, 7 (2002), paper no. 2 [~ejpecp]
  39. Gregory F. Lawler, Problems on the geometry of random walk paths, Probability Models in Mathematical Physics, World Scientific (1991), 135--143
  40. Gregory F. Lawler, Random walks, harmonic measure, and Laplacian growth models, Probability and Phase Transitions, ed. G. Grimmett, Kluwer (1994), 191-208
  41. Gregory F. Lawler, Random walks: simple and self-avoiding, Topics in Comtemporary Probability and its Applications, J. Laurie Snell, ed., CRC (1995), 55-74
  42. Gregory F. Lawler, Recurrence and transience for a card shuffling model, Combinatorics, Probability, and Computing 4 (1995), 133-142
  43. Krzysztof Burdzy and Gregory F. Lawler, Rigorous exponent inequalities for random walks, Journal of Physics A 23 (1990), L23--L28
  44. Gregory F. Lawler, Strict concavity of the half plane intersection exponent for planar Brownian motion, Electronic Journal of Probability 5 (2000), paper no. 8 [~ejpecp]
  45. Gregory F. Lawler, Strict concavity of the intersection exponent for Brownian motion in two and three dimensions, Mathematical Physics Electronic Journal 5 (1998), #5
  46. Gregory F. Lawler, Subdiffusive fluctuations for internal diffusion limited aggregation, Annals of Probability 23 (1995), 71-86
  47. Gregory F. Lawler, The dimension of the frontier of planar Brownian motion, Electronic Communications in Probability 1 (1996), 29-47 [~ejpecp]
  48. Gregory F. Lawler, Oded Schramm, and Wendelin Werner, The dimension of the planar Brownian frontier is 4/3, Math. Research Letters 8 (2001), 401--411
  49. Gregory F. Lawler, Emily E. Puckette, The disconnection exponent for simple random walk, Israel Journal of Mathematics 99 (1997), 109-122.
  50. Gregory F. Lawler, The Edwards model and the weakly self-avoiding walk, Journal of Physics A 23 (1990), 1467--1470#
  51. Joe Blum, Gregory F. Lawler, Michael Reed, and Insun Shin, The effect of cytoskeletal geometry on intracellular diffusion, Biophysical Journal 56 (1989), 995--1005
  52. Bertrand Duplantier, Gregory F. Lawler, Jean-Francois Le Gall, and Terry Lyons, The geometry ofthe Brownian curve, Bull. Sci. Math, 2eme serie, 117 (1993), 91-106
  53. Gregory F. Lawler, The infinite self-avoiding walk in high dimensions, Annals of Probability 17 (1989), 1367--1376
  54. Gregory F. Lawler, Emily Puckette, The intersection exponent for simple random walk, Combinatorics, Probability, and Computing 9 (2000), 441--464
  55. Gregory F. Lawler, The logarithmic correction for loop-erased walk in four dimensions, Proceedings of the Conference in Honor of J.P. Kahane, special issue of Journal of Fourier Analysis and Applications, CRC Press (1995), 347-362
  56. Gregory F. Lawler, The probability of intersection of independent random walks in four dimensions, Commun. Math.Phys 86 (1982), 539-554
  57. Gregory F. Lawler and Wendelin Werner, Universality for conformally invariant intersection exponents, J. European Math. Soc. 2 (2000) , 291--328
  58. Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents I: half-plane exponents, Acta. Math. 187 (2001), 237--273 [math.PR/9911084]
  59. Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents II: plane exponents, Acta Math. 187 (2001), 275--308 [math.PR/0003156]
  60. Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents III: Two-sided exponents, Ann. Inst. Henri Poincare' 38 (2002), pp 109--123 [math.PR/0005294]
  61. Gregory F. Lawler, Weak convergence of a random walk in a random environment, Commun. Math. Phys. 87 (1982), 81-87

Papers Accepted

  1. Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Analyticity of intersection exponents for planar Brownian motion, Acta Math. , accepted 2001 [math.PR/0005295]
  2. Gregory F. Lawler, Cut times for Brownian motion and random walk, Proceedings of Conference in Honor of Paul Erdos , accepted 2000 [html]  [abs]
  3. Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Sharp estimates for Brownian non-intersection probabilities, to appear in In and Out of Equilbrium, Birkhauser , accepted 2001 [math.PR/0101247]

Preprints

  1. Gregory F. Lawler, A note on the Green's function for random walk in four dimensions, Duke University Math Preprint 94-03 , preprint 1998
  2. Gregory F. Lawler, An introduction to the stochastic Loewner evolution , preprint 2001 [html]
  3. Gregory F. Lawler, Oded Scrhamm, and Wendelin Werner, Conformal invariance of planar loop-erased random walk and uniform spanning trees , preprint 2002 [math.PR/0112234]
  4. Gregory F. Lawler, Oded Schramm, and Wendelin Werner, On the scaling limit of planar self-avoiding walk , preprint 2002 [math.PR/0204277]
  5. Gregory F. Lawler, The frontier of a Brownian path is multifractal, preprint , preprint 1998

Book Reviews

  1. Gregory F. Lawler, Aspects and Applications of Random Walk (G. Weiss), SIAM Review \bf 37 (1995) 470-471
  2. Gregory F. Lawler, Random Walks, Brownian Motion, and Interacting Particle Systems, a Festschrift for Frank Spitzer (R. Durrett, H. Kesten, ed.), Metrika 41 (1994) 254-255
  3. Gregory F. Lawler, Self-Avoiding Walk (N. Madras and G. Slade), Annals of Probability 27 (1999), 606-609

 

dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320