Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke





.......................

.......................


Publications of Aaron Pollack    :chronological  alphabetical  combined listing:

%% Papers Published   
@article{fds340187,
   Author = {Pollack, A and Shah, S},
   Title = {The spin L-function on GSp(6) via a non-unique
             model},
   Journal = {American Journal of Mathematics},
   Volume = {140},
   Number = {3},
   Pages = {753-788},
   Publisher = {Johns Hopkins University Press},
   Year = {2018},
   Key = {fds340187}
}

@article{fds340188,
   Author = {Pollack, A},
   Title = {Unramified Godement-Jacquet theory for the spin similitude
             group},
   Journal = {Journal of the Ramanujan Mathematical Society},
   Volume = {33},
   Number = {3},
   Pages = {249-282},
   Publisher = {The Ramanujan Mathematical Society},
   Year = {2018},
   Key = {fds340188}
}

@article{fds340189,
   Author = {Pollack, A and Shah, S},
   Title = {Multivariate Rankin-Selberg integrals on GL(4) and
             GU(2,2)},
   Journal = {Canadian Mathematical Bulletin},
   Volume = {61},
   Number = {4},
   Pages = {822-835},
   Publisher = {Canadian Mathematical Society},
   Year = {2018},
   Key = {fds340189}
}

@article{fds340190,
   Author = {Pollack, A},
   Title = {Lifting laws and arithmetic invariant theory},
   Journal = {Cambridge Journal of Mathematics},
   Volume = {6},
   Number = {4},
   Pages = {347-449},
   Year = {2018},
   Key = {fds340190}
}

@article{fds330522,
   Author = {Pollack, A},
   Title = {The spin -function on for Siegel modular
             forms},
   Journal = {Compositio Mathematica},
   Volume = {153},
   Number = {7},
   Pages = {1391-1432},
   Publisher = {WILEY},
   Year = {2017},
   Month = {July},
   url = {http://dx.doi.org/10.1112/s0010437x17007114},
   Abstract = {<jats:p>We give a Rankin–Selberg integral representation
             for the Spin (degree eight) <jats:inline-formula><jats:alternatives>??<jats:tex-math>$L$</jats:tex-math></jats:alternatives></jats:inline-formula>-function
             on <jats:inline-formula><jats:alternatives>??<jats:tex-math>$\operatorname{PGSp}_{6}$</jats:tex-math></jats:alternatives></jats:inline-formula>
             that applies to the cuspidal automorphic representations
             associated to Siegel modular forms. If <jats:inline-formula><jats:alternatives>??<jats:tex-math>$\unicode[STIX]{x1D70B}$</jats:tex-math></jats:alternatives></jats:inline-formula>
             corresponds to a level-one Siegel modular form
             <jats:inline-formula><jats:alternatives>??<jats:tex-math>$f$</jats:tex-math></jats:alternatives></jats:inline-formula>
             of even weight, and if <jats:inline-formula><jats:alternatives>??<jats:tex-math>$f$</jats:tex-math></jats:alternatives></jats:inline-formula>
             has a nonvanishing <jats:italic>maximal</jats:italic>
             Fourier coefficient (defined below), then we deduce the
             functional equation and finiteness of poles of the completed
             Spin <jats:inline-formula><jats:alternatives>??<jats:tex-math>$L$</jats:tex-math></jats:alternatives></jats:inline-formula>-function
             <jats:inline-formula><jats:alternatives>??<jats:tex-math>$\unicode[STIX]{x1D6EC}(\unicode[STIX]{x1D70B},\text{Spin},s)$</jats:tex-math></jats:alternatives></jats:inline-formula>
             of <jats:inline-formula><jats:alternatives>??<jats:tex-math>$\unicode[STIX]{x1D70B}$</jats:tex-math></jats:alternatives></jats:inline-formula>.</jats:p>},
   Doi = {10.1112/s0010437x17007114},
   Key = {fds330522}
}

@article{fds330523,
   Author = {Pollack, A and Shah, S},
   Title = {On the Rankin–Selberg integral of Kohnen and
             Skoruppa},
   Journal = {Mathematical Research Letters},
   Volume = {24},
   Number = {1},
   Pages = {173-222},
   Publisher = {International Press of Boston},
   Year = {2017},
   url = {http://dx.doi.org/10.4310/mrl.2017.v24.n1.a8},
   Doi = {10.4310/mrl.2017.v24.n1.a8},
   Key = {fds330523}
}

 

dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320