Publications [#333192] of Benjamin J. Wiley
Journal Articles
- Flowers, PF; Catenacci, MJ; Wiley, BJ, "High-speed, solution-coatable memory based on Cu-SiO2 core-shell nanowires.", Nanoscale horizonsJuly,, 2016, 1(4), 313-316, Royal Society of Chemistry (RSC) [doi].
(last updated on 2024/11/19)Abstract:
Printable electronics has the potential to drastically reduce the environmental and economic costs associated with the production of electronic devices, as well as enable rapid prototyping of circuits and their printing on demand, similar to what 3D printing has done for structural objects. A major barrier to the realization of printable computers that can run programs is the lack of a solution-coatable non-volatile memory with performance metrics comparable to silicon-based devices. Here we demonstrate a non-volatile memory based on Cu-SiO2 core-shell nanowires that can be printed from solution and exhibits on-off ratios of 106, switching speeds of 50 ns, a low operating voltage of 2 V, and operates for at least 104 cycles without failure. Each of these metrics is similar to or better than Flash memory (the write speed is 20 times faster than Flash). Memory architectures based on the individual memory cells demonstrated here could enable the printing of the more complex, embedded computing devices that are expected to make up an internet of things.