Duke Herbarium Vascular Plants Database
Duke Herbarium
Arts & Sciences
Duke University

 HOME > Arts & Sciences > Duke Herbarium > Vascular Plants    Search Help Login pdf version printable version 

Publications [#362964] of Rytas J. Vilgalys

Papers Published

  1. Barge, EG; Leopold, DR; Rojas, A; Vilgalys, R; Busby, PE, Phylogenetic conservatism of mycoparasitism and its contribution to pathogen antagonism., Molecular ecology, vol. 31 no. 10 (May, 2022), pp. 3018-3030 [doi]
    (last updated on 2024/03/29)

    Abstract:
    Closely related species are expected to have similar functional traits due to shared ancestry and phylogenetic inertia. However, few tests of this hypothesis are available for plant-associated fungal symbionts. Fungal leaf endophytes occur in all land plants and can protect their host plant from disease by a variety of mechanisms, including by parasitizing pathogens (e.g., mycoparasitism). Here, we tested whether phylogenetic relatedness among species of Cladosporium, a widespread genus that includes mycoparasitic species, predicts the effect of this endophyte on the severity of leaf rust disease. First, we used congruence among different marker sequences (i.e., genealogical concordance phylogenetic species recognition criterion) to delimit species of Cladosporium. Next, in a controlled experiment, we quantified both mycoparasitism and disease modification for the selected Cladosporium species. We identified 17 species of Cladosporium; all the species reduced rust disease severity in our experiment. Cladosporium phylogeny was a significant predictor of mycoparasitism. However, we did not observe a phylogenetic effect on disease severity overall, indicating that other mechanism/s operating independently of shared ancestry also contributed to endophyte effects on disease severity. Indeed, a second experiment showed that Cladosporium endophyte exudates (no live organism) from divergent species groups equally reduced disease severity. Our results reveal that multiple mechanisms contribute to the protective effects of an endophyte against a plant pathogen, but not all traits underlying these mechanisms are phylogenetically conserved.


Duke University * Arts & Sciences * Algae * Brophytes * Fungi * Lichens * Vasculars * Reload * Login