Publications [#362159] of Ayana T. Arce

Papers Accepted
  1. Aad, G; Abbott, B; Abbott, DC; Abud, AA; Abeling, K; Abhayasinghe, DK; Abidi, SH; AbouZeid, OS; Abraham, NL; Abramowicz, H; Abreu, H; Abulaiti, Y; Hoffman, ACA; Acharya, BS; Achkar, B; Adam, L; Bourdarios, CA; Adamczyk, L; Adamek, L; Adelman, J; Adiguzel, A; Adorni, S; Adye, T; Affolder, AA; Afik, Y; Agapopoulou, C; Agaras, MN; Aggarwal, A; Agheorghiesei, C; Aguilar-Saavedra, JA; Ahmad, A; Ahmadov, F; Ahmed, WS; Ai, X; Aielli, G; Akatsuka, S; Akbiyik, M; Åkesson, TPA; Akilli, E; Akimov, AV; Khoury, KA; Alberghi, GL; Albert, J; Verzini, MJA; Alderweireldt, S; Aleksa, M; Aleksandrov, IN; Alexa, C; Alexopoulos, T; Alfonsi, A; Alfonsi, F; Alhroob, M; Ali, B; Ali, S; Aliev, M; Alimonti, G; Allaire, C; Allbrooke, BMM; Allport, PP; Aloisio, A; Alonso, F; Alpigiani, C; Camelia, EA; Estevez, MA; Alviggi, MG; Coutinho, YA; Ambler, A; Ambroz, L; Amelung, C; Amidei, D; Santos, SPAD; Amoroso, S; Amrouche, CS; Anastopoulos, C; Andari, N; Andeen, T; Anders, JK; Andrean, SY; Andreazza, A; Andrei, V; Anelli, CR; Angelidakis, S; Angerami, A; Anisenkov, AV; Annovi, A; Antel, C; Anthony, MT; Antipov, E; Antonelli, M; Antrim, DJA; Anulli, F; Aoki, M; Pozo, JAA; Aparo, MA; Bella, LA; Aranzabal, N; Ferraz, VA; Arcangeletti, C; Arce, ATH; Arguin, JF, Emulating the impact of additional proton–proton interactions in the ATLAS simulation by presampling sets of inelastic Monte Carlo events, Computing and Software for Big Science, vol. 6 no. 1 (December, 2022) [doi] .

    Abstract:
    The accurate simulation of additional interactions at the ATLAS experiment for the analysis of proton–proton collisions delivered by the Large Hadron Collider presents a significant challenge to the computing resources. During the LHC Run 2 (2015–2018), there were up to 70 inelastic interactions per bunch crossing, which need to be accounted for in Monte Carlo (MC) production. In this document, a new method to account for these additional interactions in the simulation chain is described. Instead of sampling the inelastic interactions and adding their energy deposits to a hard-scatter interaction one-by-one, the inelastic interactions are presampled, independent of the hard scatter, and stored as combined events. Consequently, for each hard-scatter interaction, only one such presampled event needs to be added as part of the simulation chain. For the Run 2 simulation chain, with an average of 35 interactions per bunch crossing, this new method provides a substantial reduction in MC production CPU needs of around 20%, while reproducing the properties of the reconstructed quantities relevant for physics analyses with good accuracy.

Duke University * Arts & Sciences * Physics * Faculty * Staff * Grad * Researchers * Reload * Login
Copyright (c) 2001-2002 by Duke University Physics.