CNCS Center for Nonlinear and Complex Systems
   Search Help Login pdf version printable version

Publications [#280128] of David J. Brady

Papers Published

  1. Yuan, X; Tsai, TH; Zhu, R; Llull, P; Brady, D; Carin, L, Compressive hyperspectral imaging with side information, Ieee Journal of Selected Topics in Signal Processing, vol. 9 no. 6 (September, 2015), pp. 964-976, Institute of Electrical and Electronics Engineers (IEEE), ISSN 1932-4553 [doi]
    (last updated on 2019/11/17)

    © 2007-2012 IEEE. A blind compressive sensing algorithm is proposed to reconstruct hyperspectral images from spectrally-compressed measurements. The wavelength-dependent data are coded and then superposed, mapping the three-dimensional hyperspectral datacube to a two-dimensional image. The inversion algorithm learns a dictionary in situ from the measurements via global-local shrinkage priors. By using RGB images as side information of the compressive sensing system, the proposed approach is extended to learn a coupled dictionary from the joint dataset of the compressed measurements and the corresponding RGB images, to improve reconstruction quality. A prototype camera is built using a liquid-crystal-on-silicon modulator. Experimental reconstructions of hyperspectral datacubes from both simulated and real compressed measurements demonstrate the efficacy of the proposed inversion algorithm, the feasibility of the camera and the benefit of side information.