CNCS Center for Nonlinear and Complex Systems
   Search Help Login pdf version printable version

Publications [#280275] of David J. Brady

Papers Published

  1. Rajwade, A; Kittle, D; Tsai, TH; Brady, D; Carin, L, Coded hyperspectral imaging and blind compressive sensing, Siam Journal on Imaging Sciences, vol. 6 no. 2 (July, 2013), pp. 782-812, Society for Industrial & Applied Mathematics (SIAM), ISSN 1936-4954 [doi]
    (last updated on 2019/11/17)

    Blind compressive sensing (CS) is considered for reconstruction of hyperspectral data imaged by a coded aperture camera. The measurements are manifested as a superposition of the coded wavelength-dependent data, with the ambient three-dimensional hyperspectral datacube mapped to a two-dimensional measurement. The hyperspectral datacube is recovered using a Bayesian implementation of blind CS. Several demonstration experiments are presented, including measurements performed using a coded aperture snapshot spectral imager (CASSI) camera. The proposed approach is capable of efficiently reconstructing large hyperspectral datacubes. Comparisons are made between the proposed algorithm and other techniques employed in compressive sensing, dictionary learning, and matrix factorization. © 2013 Society for Industrial and Applied Mathematics.