CNCS Center for Nonlinear and Complex Systems
   Search Help Login pdf version printable version

Publications [#291359] of David J. Brady

Papers Published

  1. Wang, L; Huang, J; Yuan, X; Krishnamurthy, K; Greenberg, J; Cevher, V; Rodrigues, MRD; Brady, D; Calderbank, R; Carin, L, Signal recovery and system calibration from multiple compressive poisson measurements, Siam Journal on Imaging Sciences, vol. 8 no. 3 (September, 2015), pp. 1923-1954, Society for Industrial & Applied Mathematics (SIAM) [doi]
    (last updated on 2019/11/13)

    © 2015 Society for Industrial and Applied Mathematics. The measurement matrix employed in compressive sensing typically cannot be known precisely a priori and must be estimated via calibration. One may take multiple compressive measurements, from which the measurement matrix and underlying signals may be estimated jointly. This is of interest as well when the measurement matrix may change as a function of the details of what is measured. This problem has been considered recently for Gaussian measurement noise, and here we develop this idea with application to Poisson systems. A collaborative maximum likelihood algorithm and alternating proximal gradient algorithm are proposed, and associated theoretical performance guarantees are established based on newly derived concentration-of-measure results. A Bayesian model is then introduced, to improve flexibility and generality. Connections between the maximum likelihood methods and the Bayesian model are developed, and example results are presented for a real compressive X-ray imaging system.