CNCS Center for Nonlinear and Complex Systems
   Search Help Login pdf version printable version

Publications [#335615] of Stephen W. Teitsworth

Papers Published

  1. Neu, JC; Ghanta, A; Teitsworth, SW, The Geometry of most probable trajectories in noise-driven dynamical systems, in Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications, Springer Proceedings in Mathematics and Statistics, edited by L. L. Bonilla, E. Kaxiras, and R. Melnik, Springer Proceedings in Mathematics and Statistics, vol. 232 (January, 2018), pp. 153-167, Springer International Publishing, Gewerbestr. 11, 6330 Cham, Switzerland, ISBN 9783319765983 [1803.01053], [doi]
    (last updated on 2019/10/15)

    © Springer International Publishing AG, part of Springer Nature 2018. This paper presents a heuristic derivation of a geometric minimum action method that can be used to determine most-probable transition paths in noise-driven dynamical systems. Particular attention is focused on systems that violate detailed balance, and the role of the stochastic vorticity tensor is emphasized. The general method is explored through a detailed study of a two-dimensional quadratic shear flow which exhibits bifurcating most-probable transition pathways.

    transition path, geometric stochastic action, • fluctuation loops