
Stephanos Venakides, Professor of Mathematics and CNCS: Center for nonlinear and complex systems
Fields of work: Pure and applied mathematics, physics and biology. Specific areas: Differential equations, integrable systems, acoustic and electromagnetic scattering (especially transmission anomalies and resonances), photonic crystals, exciton polaritons and recently micromagnetics.
Invited as one of the three Abel lecturers in the award of the Abel Prize to Peter Lax, The Norwegian Academy of Science and Letters, Oslo, Norway, May 2005
http://www.abelprize.no/c57575/seksjon/vis.html?tid=58729
 Contact Info:
Teaching (Fall 2018):
 MATH 353.01, ORD AND PRTL DIFF EQUATIONS
Synopsis
 Physics 047, TuTh 11:45 AM01:00 PM
 MATH 753.01, ORD AND PRTL DIFF EQUATIONS
Synopsis
 Physics 047, TuTh 11:45 AM01:00 PM
 Office Hours:
 Tuesday and Thursday 3:004:00pm
 Education:
Ph.D.  New York University  1982 
M.S.  Georgia Institute of Technology  1979 
B.S.  National Technical University of Athens (Greece)  1969 
 Specialties:

Analysis
Applied Math
 Research Interests: Integrable systems, Wave motion in complex media, Mathematical biology
Current projects:
 Analysis of the breaking of the semiclassical focusing nonlinear Schroedinger equation ,
 Resonant phenomena photonic crystals,
 Modeling dorsal closure in drosophila
Integrable Systems
Integrable systems mostly consist of families of nonlinear differential equations (ordinary and partial) that can be solved (integrated) in explicit ways through the general principle of the Lax pair, named after its discoverer, Peter Lax. The process of solution has conceptual similarities with the method of the Fourier transform used in the solution of linear differential equations. As in the Fourier transform, there is
a spectral variable at hand. While the solution of linear equations is given by a Fourier integral
in the spectral variable along a certain contour, the nonlinear case is more complicated:
The initial data are used to
specify (a) an oriented contour on the plane of the complex spectral variable and (b) a square "jump" matrix
at each point of the contour. To find the solution to the differential equation, one has to
derive a matrix that (a) is an anlytic function of the spectral variable off the contour, (b)
jumps across the contour, the left limit being equal to the right limit multiplied by the jump matrix,
and (c) has a certain normalization at the infinity point of the spectral variable. Such a problem is known
as a RiemannHilbert problem (RHP). Solving such a problem in the general case is as dificult (indeed, much more so)
as evaluating a general Fourier integral.
Yet, since the advent of Lord Kelvin's method of
stationary phase/steepest descent, the full asymptotic expansion of general Fourier integrals is
possible in asymptotic limits. Physically important one include long time limits as well as semiclassical (large frequency or small
Planck constant) limits. The foundation of this approach is that the main contribution from
the integral arises from
the neighborhood of points of the contour of integration where the fast growing exponent
under the integral is stationary. Properly restricted to these neighborhoods, the integral reduces
asymptotically to a Gaussian integral, hence it is readily
computable. The situation is analogous in the nonlinear case. Through a procedure introduced by Deift and Zhou
in the case of long time limits, factorization of the jump matrix coupled with contour deformations allows the
localization of the contour, the simplification of the jump matrix and the rigorous asymptotic reduction
to a solvable RHP. The procedure is known as steepest descent for RHP, arising from the "pushing"
of parts of the contour to regions where it is exponentially close to the identity and can be thus neglected.
In dispersive equations involving oscillations, the method was readily applicable when the
asymptotic oscillation was weakly nonlinear i.e. consisted of modulated plane wave solutions.
In the presence of fully nonlinear oscillations simply finding the stationary points of a
scalar function was not appropriate. In collaboration with Deift and Zhou, (a) we
found that the reduced RHP lives on a union of intervals of order 1 length in
the complex plane, (b) we introduced the "gfunction mechanism", namely a
procedure that led to a system of transcendental equations and inequalities that
the endpoints of the intervals satisfy and from which they are identified uniquely when they exist.
(c) having identified these points, we solved the reduced RHP through a Riemann theta functon
and established that the waveform is mostly a modulated quasiperiodic nonlinear wave. This work was done in th econtext of the celebrated Korteweg de Vries equation (KdV).
In collaboration with Tovbis and Zhou, we then tackled the problem of the nonlinear
focusing Schroedinger (NLS) equation
that is known to be modulationally unstable (KdV is stable) and thus presented a further difficulty. We have succeeded
in obtaining the global spacetime solution to the initial value problem for special
data that contain only radiation and the soluiton till the second break in the presence
of a soliton content. In both cases, it is analyticity properties of the spectral data (jump matrix)
that save us from the instability. Spectral data NLS calculations are delicate when possible; it required
special work in collaboration with Tovbis to calculate the data in the above cases.
What one learns from these theories is that as waveforms evolve, they break into more complicated
waveforms or relax to simpler ones. Multiple theta functions in the formulae describe the
evoluiton of multiphase modes. The analogue of caustics appears in spacetime along the
boundaries at which the number of participating modes jumps. Still in collaboration with Tovbis and Zhou,
we are working to understand the successive NLS breaking of the solution in the presence of solitons.
We have already shown that, with our intial data, there is only one break in the pure radiation case.
We are also working to find how to study how the modulational instability
manifests itself in our theory.
Wave Propagation in complex media
In earlier work with Bonilla and Higuera, we have studied the breakdown of the stability of the steady state in a Gunn
semiconductor, that leads to the generation of a time periodic pulse train that is commonly used as a microwave
source. With Bonilla Kindelan and Moscoso we have studied the generation and propagation of travelling fronts in
semiconductor superlattices.
In collaboration with V. Papanicolaou, Haider and Shipman we have studied optical wave propagation in a medium composed of two dielectrics
that are distributed in space periodically (photonic crystal) or randomlly or as a combination (periodic medium with randomly distributed defects). In recent work with Shipman, we have explained the role of anomalous transmission behavior mediated by
resonances in the system.
We have made advances in the optimization of the quality factor of certain resonances.
Most of the materials used in practice as well as in most theory in this domain are either linear or weakly nonlinear.
My current direction is towards introducing strong nonlinearity in the above media in a way that is physically realizable. Success in this would be
interesting physically and mathematically; it can be better achieved with collaborations that cut across disciplinary lines.
Mathematical Biology
In recent years I have joined the drosophila dorsal closure group of colleagues at Duke. The group was started by Dan Kiehart (Biology) then Glenn Edwards (Physics) joined, then myself and recently Anita Layton (Mathematics). It includes postdos and graduate students and works through regular meetings. My interest here is the modeling of the closure of the dorsal opening of the drosophila embryo in the process of morphogenesis. The dorsal opening has the shape of a human eye; during closure the opposite flanks are "zipped" together at the canthi. The challenge is to understand the nature of the forces, how they affect the kinetics and their biological and physical origin.
We are developing a quantitative model that connects the empirical
kinematic observations with contributing tissue forces. We
explicitly model the coordination of the elastic and active
contractile forces by introducing a unit that consists of an
elastic subunit serially connected with a contractile subunit in
the major drivers of DC. The morphology of the dorsal surface,
particularly, the shape change of the purse string and the
movement of the canthi, is dynamically described through balance
of forces. We address the zipping process by attributing zipping
to force and deriving a function that summarizes the complications
in the canthus.
Our model
recapitulates the experimental observations of wild type native,
laser perturbed and mutant native closure made
in earlier work of the group (Hutson et.al.)
A remarkable feature is our employment of a force velocitylaw to model active contractility in the
actin/myosin complex. In coordination with the
elasticity of actin, this leads to a type of early equation introduced by Hill in his muscle model that preceded the detailed knowledge of the interaction of actin and myosin through crossbridges. I believe that this law is intrinsically appropriate for description of motor activity.
 Areas of Interest:
 Integrable Systems
 Wave Propagation
 Mathematical Biology
 Keywords:
Animals • Animals, Genetically Modified • Cell Adhesion • Computer Simulation • dorsal closure • Drosophila • Drosophila Proteins • Embryo, Nonmammalian • Embryonic Development • Epithelial Cells • Epithelium • Genes, Insect • Image Processing, ComputerAssisted • Integrin alpha Chains • Integrins • Lasers • Mathematics • Mechanotransduction, Cellular • Microscopy, Confocal • Microsurgery • Models, Biological • Morphogenesis • Mutation • Pseudopodia • resonance • semiclassical NLS • Stress, Mechanical • UpRegulation
 Current Ph.D. Students
(Former Students)
 Postdocs Mentored
 Andreas Aristotelous (2012  2013)
 Recent Publications
(More Publications)
 Aristotelous, AC; Crawford, JM; Edwards, GS; Kiehart, DP; Venakides, S, Mathematical models of dorsal closure.,
Progress in Biophysics and Molecular Biology
(May, 2018) [doi] [abs]
 PerezArancibia, C; Shipman, S; Turc, C; Venakides, S, DDM solutions of quasiperiodic transmission problems in layered
media via robust boundary integral equations at all frequencies
(December, 2017)
 Bruno, OP; Shipman, SP; Turc, C; Venakides, S, Threedimensional quasiperiodic shifted Green function throughout the spectrum, including Wood anomalies,
Proceedings. Mathematical, Physical, and Engineering Sciences, vol. 473 no. 2207
(November, 2017) [doi] [abs]
 Kiehart, DP; Crawford, JM; Aristotelous, A; Venakides, S; Edwards, GS, Cell Sheet Morphogenesis: Dorsal Closure in Drosophila melanogaster as a Model System.,
Annual Review of Cell and Developmental Biology, vol. 33
(October, 2017),
pp. 169202 [doi] [abs]
 Sergey Belov and Stephanos Venakides, Smooth parametric dependence of asymptotics of the semiclassical focusing NLS,
Analysis & PDE, vol. 8 no. 2
(April, 2015),
pp. 257288 [doi] [abs]
