Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke





.......................

.......................


Publications [#300274] of Anita T. Layton

Papers Published

  1. Layton, AT; Edwards, A, Predicted effects of nitric oxide and superoxide on the vasoactivity of the afferent arteriole., American Journal of Physiology: Renal Physiology, vol. 309 no. 8 (October, 2015), pp. F708-F719, ISSN 1931-857X [doi]
    (last updated on 2017/12/12)

    Abstract:
    We expanded a published mathematical model of an afferent arteriole smooth muscle cell in rat kidney (Edwards A, Layton, AT. Am J Physiol Renal Physiol 306: F34-F48, 2014) to understand how nitric oxide (NO) and superoxide (O(2)(-)) modulate the arteriolar diameter and its myogenic response. The present model includes the kinetics of NO and O(2)(-) formation, diffusion, and reaction. Also included are the effects of NO and its second messenger cGMP on cellular Ca²⁺ uptake and efflux, Ca²⁺-activated K⁺ currents, and myosin light chain phosphatase activity. The model considers as well pressure-induced increases in O(2)(-) production, O(2)(-)-mediated regulation of L-type Ca²⁺ channel conductance, and increased O(2)(-) production in spontaneous hypertensive rats (SHR). Our results indicate that elevated O(2)(-) production in SHR is sufficient to account for observed differences between normotensive and hypertensive rats in the response of the afferent arteriole to NO synthase inhibition, Tempol, and angiotensin II at baseline perfusion pressures. In vitro, whether the myogenic response is stronger in SHR remains uncertain. Our model predicts that if mechanosensitive cation channels are not modulated by O(2)(-), then fractional changes in diameter induced by pressure elevations should be smaller in SHR than in normotensive rats. Our results also suggest that most NO diffuses out of the smooth muscle cell without being consumed, whereas most O(2)(-) is scavenged, by NO and superoxide dismutase. Moreover, the predicted effects of superoxide on arteriolar constriction are not predominantly due to its scavenging of NO.

 

dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320