People at CTMS

» Search People

Publications of Shailesh Chandrasekharan    :chronological  alphabetical  combined  by tags  bibtex listing:

search www.slac.stanford.edu.

Books

  1. S. Chandrasekharan and U.-J. Wiese,, AN INTRODUCTION TO CHIRAL SYMMETRY ON THE LATTICE, in Prog. Part. Nucl. Phys. Vol. 53, issue 1, (2004)  [author's comments]
  2. S. Chandrasekharan, NOVEL QUANTUM MONTE CARLO ALGORITHMS FOR FERMIONS, in Quantum Monte Carlo: Recent Advances and Common Problems in Condensed Matter Physics and Field Theory, edited by M. Compostrini, M.P. Lomardo and F. Paderiva (2001), EDIZIONI ETS  [abs]
  3. S. Chandrasekharan, SOLVING SIGN PROBLEMS WITH MERON ALGORITHMS, in Computer Simulations in Condensed Matter Physics XIII, Springer Proc. Phys. 86, pp 28-42, edited by D.P. Landau, S.P.Lewis and H.-B.Shuttler (January, 2000), Springer
  4. Chandrasekharan, S., CRITICAL BEHAVIOR AT THE QCD PHASE TRANSITION WITH TWO MASSLESS QUARK FLAVORS, in Continuous Advances in QCD, edited by Smilga, A.V. (1994), World Scientific
  5. S. Chandrasekharan, CRITICAL BEHAVIOR AT THE QCD PHASE TRANSITION WITH TWO MASSLESS QUARK FLAVORS, in Continuous Advances in QCD, edited by Andrei V. Smilga (1994), World Scientific

Papers Published

  1. Chandrasekharan, S; Siew, RX; Bhattacharya, T, Monomer-dimer tensor-network basis for qubit-regularized lattice gauge theories, Physical Review D, vol. 111 no. 11 (June, 2025), American Physical Society (APS) [doi]  [abs]
  2. Liu, H; Bhattacharya, T; Chandrasekharan, S; Gupta, R, Phases of 2D massless QCD with qubit regularization, Physical Review D, vol. 111 no. 9 (May, 2025) [doi]  [abs]
  3. Siew, RX; Chandrasekharan, S; Kaul, RK, Transverse field γ -matrix spin chains, Physical Review D, vol. 110 no. 9 (November, 2024), American Physical Society (APS) [doi]  [abs]
  4. Chandrasekharan, S; Nguyen, ST; Richardson, TR, Worldline Monte Carlo method for few-body nuclear physics, Physical Review C, vol. 110 no. 2 (August, 2024), American Physical Society (APS) [doi]  [abs]
  5. Maiti, S; Banerjee, D; Chandrasekharan, S; Marinkovic, MK, Asymptotic Freedom at the Berezinskii-Kosterlitz-Thouless Transition without Fine-Tuning Using a Qubit Regularization., Physical review letters, vol. 132 no. 4 (January, 2024), pp. 041601, American Physical Society (APS) [doi]  [abs]
  6. Liu, H; Bhattacharya, T; Chandrasekharan, S; Gupta, R, Phases of 2d massless QCD with qubit regularization, Physical Review D: Particles, Fields, Gravitation and Cosmology (December, 2023), American Physical Society [doi]  [abs] [unrefereed publication]
  7. Bhattacharya, T; Chandrasekharan, S; Gupta, R; Richardson, TR; Singh, H, Topological terms with qubit regularization and relativistic quantum circuits (October, 2023) [doi]  [abs] [unrefereed publication]
  8. Liu, H; Huffman, E; Chandrasekharan, S; Kaul, RK, Erratum: Quantum Criticality of Antiferromagnetism and Superconductivity with Relativity [Phys. Rev. Lett. 128, 117202 (2022)]., Physical review letters, vol. 131 no. 13 (September, 2023), pp. 139901 [doi]  [abs] [unrefereed publication]
  9. Maiti, S; Banerjee, D; Chandrasekharan, S; Marinkovic, M, A qubit regularization of asymptotic freedom at the BKT transition without fine-tuning, Physical Review Letters (July, 2023), American Physical Society [doi]  [abs] [high impact paper]
  10. Maiti, S; Banerjee, D; Chandrasekharan, S; Marinkovic, MK, Three-dimensional Gross-Neveu model with two flavors of staggered fermions, Proceedings of Science, vol. 396 (July, 2022)  [abs]
  11. Zhou, J; Singh, H; Bhattacharya, T; Chandrasekharan, S; Gupta, R, Spacetime symmetric qubit regularization of the asymptotically free two-dimensional O(4) model, Physical Review D: Particles, Fields, Gravitation and Cosmology, vol. 105 no. 5 (March, 2022), American Physical Society [doi]  [abs] [reputed journal]
  12. Liu, H; Huffman, E; Chandrasekharan, S; Kaul, RK, Quantum Criticality of Antiferromagnetism and Superconductivity with Relativity., Physical review letters, vol. 128 no. 11 (March, 2022), pp. 117202 [doi]  [abs] [high impact paper]
  13. Liu, H; Chandrasekharan, S, Qubit Regularization and Qubit Embedding Algebras, Symmetry, vol. 14 no. 2 (February, 2022) [New_Applications_Symmetry_Lattice_Field_Theory], [doi]  [abs] [author's comments] [reputed journal]
  14. Banerjee, D; Chandrasekharan, S, Subleading conformal dimensions at the O(4) Wilson-Fisher fixed point, Physical Review D, vol. 105 no. 3 (February, 2022), pp. L031507 [doi]  [abs] [author's comments] [high impact paper]
  15. T. Bhattacharya, A. Buser, S. Chandrasekharan, R. Gupta and H. Singh, Qubit regularization of asymptotic freedom, Physical Review Letters (December 3, 2020) [2012.02153]  [abs] [submitted]
  16. Bhattacharya, T; Buser, A; Chandrasekharan, S; Gupta, R; Singh, H, Qubit regularization of asymptotic freedom, Physical Review Letters, vol. 26 no. 17 (December, 2020), pp. 172001, American Physical Society [doi]  [abs] [high impact paper]
  17. H. Liu, S. Chandrasekharan and R. Kaul, Hamiltonian models of lattice fermions solvable by the meron-cluster algorithm, Physical Review D (November 30, 2020) [2011.13208]  [abs] [submitted]
  18. Liu, H; Chandrasekharan, S; Kaul, R, Hamiltonian models of lattice fermions solvable by the meron-cluster algorithm, Physical Review D: Particles, Fields, Gravitation and Cosmology, vol. 103 no. 5 (November, 2020), American Physical Society [doi]  [abs] [reputed journal]
  19. Chandrasekharan, S; Orasch, O; Gattringer, C; Torek, P, Baryon bag simulation of QCD in the strong coupling limit, PoS LATTICE2019 (2019) 117 (August, 2020), arXiv.org [doi]  [abs] [unrefereed publication]
  20. Liu, H; Chandrasekharan, S; Kaul, R, Quantum Critical Phenomena in an O(4) Fermion Chain, PoS LATTICE2019 (2019) 222 (August, 2020) [doi]  [abs] [unrefereed publication]
  21. Frank, J; Huffman, E; Chandrasekharan, S, Emergence of Gauss' law in a Z2 lattice gauge theory in 1 + 1 dimensions, Physics Letters Section B Nuclear Elementary Particle and High Energy Physics, vol. 806 (July, 2020) [doi]  [abs] [reputed journal]
  22. Chandrasekharan, S; Huffman, E, Fermion-bag inspired Hamiltonian lattice field theory for fermionic quantum criticality, Physical Review D: Particles, Fields, Gravitation and Cosmology, vol. 07 no. 7 (April, 2020), American Physical Society [doi]  [abs] [author's comments] [reputed journal]
  23. Singh, H; Chandrasekharan, S, Qubit regularization of the O (3) sigma model, Physical Review D, vol. 100 no. 5 (September, 2019) [doi]  [abs] [reputed journal]
  24. Banerjee, D; Chandrasekharan, S; Orlando, D; Reffert, S, Conformal Dimensions in the Large Charge Sectors at the O(4) Wilson-Fisher Fixed Point., Physical review letters, vol. 123 no. 5 (August, 2019), pp. 051603 [doi]  [abs] [high impact paper]
  25. Singh, H; Chandrasekharan, S, Few-body physics on a spacetime lattice in the worldline approach, Physical Review D, vol. 99 no. 7 (April, 2019) [doi]  [abs] [reputed journal]
  26. Orasch, O; Chandrasekharan, S; Gattringer, C; Törek, P, Baryon bag simulation of QCD in the strong coupling limit, Proceedings of Science, vol. 363 (January, 2019)  [abs]
  27. Ayyar, V; Chandrasekharan, S, Generating a mass gap using Feynman diagrams in an asymptotically free theory, edited by Della Morte, M; Fritzsch, P; Gámiz Sánchez, E; Pena Ruano, C, EPJ Web of Conferences, vol. 175 (March, 2018), pp. 11010-11010, E D P SCIENCES [doi]  [abs]
  28. Ayyar, V; Chandrasekharan, S; Rantaharju, J, Benchmark results in the 2D lattice Thirring model with a chemical potential, vol. 97 no. 5 (March, 2018) [doi]  [abs]
  29. Banerjee, D; Chandrasekharan, S; Orlando, D, Conformal dimensions via large charge expansion, vol. 120 no. 6 (February, 2018), pp. 061603 [doi]  [abs]
  30. Acknowledgement to Reviewers of Condensed Matter in 2017, Condensed Matter, vol. 3 no. 1 (January, 2018), pp. 3-3, MDPI AG [doi]  [abs]
  31. Singh, H; Chandrasekharan, S, Worldline approach to few-body physics on the Lattice, Proceedings of Science, vol. 334 (January, 2018)  [abs]
  32. Chandrasekharan, S; Ayyar, V, Generating a nonperturbative mass gap using Feynman diagrams in an asymptotically free theory, Physical Review D - Particles, Fields, Gravitation and Cosmology, vol. 96 no. 11 (December, 2017), American Physical Society [doi]  [abs]
  33. Huffman, E; Chandrasekharan, S, Fermion bag approach to Hamiltonian lattice field theories in continuous time, Physical Review D - Particles, Fields, Gravitation and Cosmology, vol. 96 no. 11 (December, 2017), American Physical Society [doi]  [abs]
  34. Hann, CT; Huffman, E; Chandrasekharan, S, Solution to the sign problem in a frustrated quantum impurity model, Annals of Physics, vol. 376 (January, 2017), pp. 63-75, Elsevier BV [doi]  [abs]
  35. Huffman, E; Chandrasekharan, S, Solution to sign problems in models of interacting fermions and quantum spins., Physical review. E, vol. 94 no. 4-1 (October, 2016), pp. 043311 [doi]  [abs]
  36. Ayyar, V; Chandrasekharan, S, Fermion masses through four-fermion condensates, Journal of High Energy Physics, vol. 2016 no. 10 (October, 2016), Springer Nature [doi]  [abs]
  37. Huffman, E; Banerjee, D; Chandrasekharan, S; Wiese, UJ, Real-time evolution of strongly coupled fermions driven by dissipation, Annals of Physics, vol. 372 (September, 2016), pp. 309-319, Elsevier BV [doi]  [abs]
  38. Ayyar, V; Chandrasekharan, S, Origin of fermion masses without spontaneous symmetry breaking, Physical Review D, vol. 93 no. 8 (April, 2016), American Physical Society (APS) [doi]  [abs]
  39. Chandrasekharan, S, Fermion bags, topology and index theorems, Proceedings of Science, vol. Part F128557 (January, 2016)  [abs]
  40. Ayyar, V; Chandrasekharan, S, Massive fermions without fermion bilinear condensates, Physical Review D Particles Fields Gravitation and Cosmology, vol. 91 no. 6 (March, 2015), American Physical Society (APS), ISSN 1550-7998 [doi]  [abs]
  41. Zou, H; Liu, Y; Lai, CY; Unmuth-Yockey, J; Yang, LP; Bazavov, A; Xie, ZY; Xiang, T; Chandrasekharan, S; Tsai, SW; Meurice, Y, Progress towards quantum simulating the classical O(2) model, Physical Review A - Atomic, Molecular, and Optical Physics, vol. 90 no. 6 (December, 2014), American Physical Society (APS), ISSN 1050-2947 [doi]  [abs]
  42. Huffman, E; Chandrasekharan, S, Solution to new sign problems with Hamiltonian Lattice Fermions, PoS (LATTICE 2014) 058 (November, 2014) [1411.7147v2]  [abs]
  43. Huffman, EF; Chandrasekharan, S, Solution to sign problems in half-filled spin-polarized electronic systems, Physical Review B Condensed Matter and Materials Physics, vol. 89 no. 11 (March, 2014), pp. 111101, American Physical Society (APS) [1311.0034v1], [doi]  [abs]
  44. E.F. Huffman and S. Chandrasekharan, Solution to sign problems in half-filled spin-polarized electronic systems, Phys. Rev. (Rapid Communications), vol. B89 (February, 2014), pp. 111101 (arXiv:1311.0034.) [PhysRevB.89.111101], [doi]  [abs]
  45. Chandrasekharan, S, Fermion bags and a new origin for a fermion mass, Proceedings of Science, vol. Part F130500 (January, 2014) [1412.3532v1]  [abs]
  46. Chandrasekharan, S; Li, A, Quantum critical behavior in three dimensional lattice Gross-Neveu models, Physical Review D Particles Fields Gravitation and Cosmology, vol. 88 no. 2 (July, 2013), pp. 021701, American Physical Society (APS) [1304.7761v1], [doi]  [abs]
  47. Chandrasekharan, S, Fermion bag approach to fermion sign problems, The European Physical Journal A, vol. 49 no. 7 (July, 2013), pp. 90, Springer Science and Business Media LLC [1304.4900v1], [doi]  [abs]
  48. Chandrasekharan, S, Quantum critical behavior with massless staggered fermions in three dimensions, Proceedings of Science, vol. 29-July-2013 (January, 2013), pp. 049 [conf.cgi]  [abs]
  49. Chandrasekharan Shailesh, Fermion Bag Solutions to Sign Problems, Proceedings of Science, vol. Lattice2012 (December, 2012), pp. 224 [doi]  [abs]
  50. Chandrasekharan Shailesh, Solutions to sign problems in lattice Yukawa models, Phys. Rev. D, vol. 86 no. 2 (July, 2012), pp. 021701, American Physical Society, ISSN 1550-7998 [PhysRevD.86.021701], [doi]  [abs]
  51. Chandrasekharan, S; Li, A, Fermion bag solutions to some sign problems in four-fermion field theories, Phys. Rev. D, vol. 85 no. 9 (May, 2012), pp. 091502, American Physical Society, ISSN 1550-7998 [PhysRevD.85.091502], [doi]  [abs]
  52. Chandrasekharan, S; Li, A, Fermion Bags, Duality, and the Three Dimensional Massless Lattice Thirring Model, Phys. Rev. Lett., vol. 108 no. 14 (April, 2012), pp. 140404, American Physical Society [22540775], [doi]  [abs]
  53. Chandrasekharan, S; Li, A, The generalized fermion bag approach, Proceedings of Science, vol. Lattice 2011 (December, 2011), pp. 058 [1111.5276v1]  [abs]
  54. Chandrasekharan, S; Wiese, U-J, Partition Functions of Strongly Correlated Electron Systems as "Fermionants" (August, 2011) [1108.2461v1]  [abs]
  55. Chandrasekharan, S; Li, A, Fermion bag approach to the sign problem in strongly coupled lattice QED with Wilson fermions, Journal of High Energy Physics, vol. 018 no. 1 (2011), Springer Nature, ISSN 1126-6708 [available here], [doi]  [abs]
  56. Chandrasekharan, S; Li, A, Anomaly and a QCD-like phase diagram with massive bosonic baryons, Journal of High Energy Physics, vol. 12 no. 021 (2010), Springer Nature, ISSN 1126-6708 [available here], [doi]  [abs]
  57. Liu, D; Chandrasekharan, S; Baranger, HU, Quantum Phase Transition and Dynamically Enhanced Symmetry in Quadruple Quantum Dot System, Physical Review Letters, vol. 105 no. 25 (2010), pp. 256801 [21231607], [doi]  [abs]
  58. Liu, D; Chandrasekharan, S; Baranger, HU, Conductance of quantum impurity models from quantum Monte Carlo, Physical Review B, vol. 82 no. 16 (2010), pp. 165447, American Physical Society (APS), ISSN 1098-0121 [repository], [doi]  [abs]
  59. Chandrasekharan, S, Fermion bag approach to lattice field theories, Physical Review D, vol. 82 no. 2 (2010), pp. 025007, American Physical Society (APS), ISSN 1550-7998 [repository], [doi]  [abs]
  60. Banerjee, D; Chandrasekharan, S, Finite size effects in the presence of a chemical potential: A study in the classical non-linear O(2) sigma-model, Physical Review D, vol. 81 no. 12 (2010), pp. 125007, American Physical Society (APS), ISSN 1550-7998 [repository], [doi]  [abs]
  61. D. Podolski, S. Chandrasekharan and A.Vishwanath, Phase Transitions of S=1 Spinor Condensates in an optical lattice, Physical Review B, vol. 80 (2009), pp. 214513 [e214513]  [abs]
  62. Kaul, RK; Ullmo, D; Zarand, G; Chandrasekharan, S; Baranger, HU, Ground state and excitations of quantum dots with magnetic impurities, Phys. Rev. B, vol. 80 no. 3 (2009), pp. 035318, American Physical Society (APS), ISSN 1098-0121 [e035318], [doi]  [abs]
  63. Cecile, DJ; Chandrasekharan, S, -Resonance and convergence of chiral perturbation theory, Proceedings of Science, vol. 66 (January, 2008)  [abs]
  64. Cecile, D. J. and Chandrasekharan, Shailesh, Modeling pion physics in the $\epsilon$-regime of two- flavor QCD using strong coupling lattice QED, Phys. Rev., vol. D77 (2008), pp. 014506 [pdf]  [abs]
  65. Chandrasekharan, Shailesh, A new computational approach to lattice quantum field theories, PoS, vol. LATTICE2008 (2008), pp. 003 [pdf]  [abs]
  66. Jiang, F.-J. and Nyfeler, M. and Chandrasekharan, S. and Wiese, U. -J., From an Antiferromagnet to a Valence Bond Solid: Evidence for a First Order Phase Transition, J. of Stat. Mech, vol. P02009 (2008)
  67. S. Chandrasekharan and F.-J. Jiang and M. Pepe and U.-J. Wiese, Rotor spectra, berry phases, and monopole fields: From antiferromagnets to QCD, Physical Review D (Particles and Fields), vol. 78 no. 7 (2008), pp. 077901, APS [e077901]
  68. Cecile, D. J. and Chandrasekharan, Shailesh, Role of the $\sigma$-resonance in determining the convergence of chiral perturbation theory, Phys. Rev., vol. D77 (2008), pp. 091501 [pdf]  [abs]
  69. Cecile, D. J. and Chandrasekharan, Shailesh, Absence of vortex condensation in a two dimensional fermionic XY model, Phys. Rev., vol. D77 (2008), pp. 054502 [pdf]  [abs]
  70. Chandrasekharan, S; Jiang, FJ; Pepe, M; Wiese, UJ, {Rotor spectra, Berry phases, and monopole fields: From antiferromagnets to QCD}, Phys. Rev., vol. D78 no. 7 (2008), pp. 077901, American Physical Society (APS), ISSN 1550-7998 [pdf], [doi]  [abs]
  71. Cecile, DJ; Chandrasekharan, S, Sigma-resonance and convergence of chiral perturbation theory, PoS, vol. LATTICE2008 (2008), pp. 071 [0810.2423v1]  [abs]
  72. Chandrasekharan Shailesh, {A new computational approach to lattice quantum field theories}, PoS, vol. LATTICE2008 (2008), pp. 003 [0810.2419v1]  [abs]
  73. Cecile, DJ; Chandrasekharan, S, Role of the sigma-resonance in determining the convergence of chiral perturbation theory, Phys. Rev. D (Rapid Communications), vol. 77 no. 9 (2008), pp. 091501, American Physical Society (APS), ISSN 1550-7998 [PhysRevD.77.091501], [doi]  [abs]
  74. Jiang, FJ; Nyfeler, M; Chandrasekharan, S; Wiese, UJ, From an Antiferromagnet to a Valence Bond Solid: Evidence for a First Order Phase Transition, J. Stat. Mech., vol. 2008 no. 2 (2008), pp. P02009, IOP Publishing, ISSN 1742-5468 (arXiv:0710.3926.) [available here], [doi]  [abs]
  75. Cecile, DJ; Chandrasekharan, S, Absence of vortex condensation in a two dimensional fermionic XY model, Phys. Rev. D, vol. 77 no. 5 (2008), pp. 054502, American Physical Society (APS), ISSN 1550-7998 [e054502], [doi]  [abs]
  76. Chandrasekharan, Shailesh and Mehta, Abhijit C., Effects of the anomaly on the two-flavor QCD chiral phase transition, Phys. Rev. Lett., vol. 99 (2007), pp. 142004 [pdf]  [abs]
  77. Podolsky, D; Chandrasekharan, S; Vishwanath, A, Phase Transitions of S=1 Spinor Condensates in an Optical Lattice, Phys. Rev. B. (accepted), vol. 80 no. 21 (2007), American Physical Society (APS), ISSN 1098-0121 [repository], [doi]  [abs]
  78. Podolsky, D; Berkeley, UC; Chandrasekharan, S; Vishwanath, A; Berkeley, LBL, Novel transitions in S=1 spinor condensates and XY Ashkin-Teller universality, arXiv:0707.0695 [cond-mat.stat-mech] (2007)  [abs]
  79. Cecile, DJ; Chandrasekharan, S, Modeling pion physics in the epsilon-regime of two-flavor QCD using strong coupling lattice QED, Phys. Rev. D, vol. 77 no. 1 (2007), pp. 014506, American Physical Society (APS), ISSN 1550-7998 [e014506], [doi]  [abs]
  80. Lee, JW; Chandrasekharan, S; Baranger, HU, Disorder-Induced Superfluidity in Hardcore Bosons in Two Dimensions, Phys. Rev. B (2007) [0611109v1]  [abs]
  81. Chandrasekharan, S; Mehta, AC, Effects of the anomaly on the two-flavor QCD chiral phase transition, Physical Review Letters, vol. 99 (2007), pp. 142004 [0705.0617v1], [doi]  [abs]
  82. Lee, Ji-Woo and Chandrasekharan, Shailesh and Baranger, Harold U., Disorder-Induced Superfluidity in Hardcore Bosons in Two Dimensions (2006) [pdf]  [abs]
  83. Chandrasekharan, Shailesh, Anomalous Superfluidity in $(2+1)$-Dimensional Two-Color Lattice QCD, Phys. Rev. Lett., vol. 97 no. 18 (2006), pp. 182001
  84. Kaul, Ribhu K. and Zar\'and, Gergely and Chandrasekharan, Shailesh and Ullmo, Denis and Baranger, Harold U., Spectroscopy of the Kondo Problem in a Box, Phys. Rev. Lett., vol. 96 no. 17 (2006), pp. 176802
  85. Chandrasekharan, Shailesh and Jiang, Fu-Jiun, Phase-diagram of two-color lattice QCD in the chiral limit, Phys. Rev., vol. D74 (2006), pp. 014506 [pdf]  [abs]
  86. Chandrasekharan, S, New approaches to strong coupling lattice QCD, Int. J. Mod. Phys., vol. B20 (2006), pp. 2714-2723
  87. Chandrasekharan, S; Jiang, F-J, Chiral limit of 2-color QCD at strong couplings, PoS, vol. LAT2005 (2006), pp. 198 [0509117v1]  [abs]
  88. Priyadarshee, A; Chandrasekharan, S; Lee, JW; Baranger, HU, Quantum Phase Transitions of Hard-Core Bosons in Background Potentials, Phys. Rev. Lett., vol. 97 no. 11 (2006), pp. 115703, ISSN 0031-9007 [17025902], [doi]  [abs]
  89. Kaul, RK; Zaránd, G; Chandrasekharan, S; Ullmo, D; Baranger, HU, Spectroscopy of the Kondo Problem in a Box, Phys.Rev.Lett., vol. 96 no. 17 (2006), pp. 176802, ISSN 0031-9007 [16712322], [doi]  [abs]
  90. Chandrasekharan, S; Mehta, AC, Effects of the anomaly on the QCD chiral phase transition, Proceedings of Science, vol. LAT2006 no. 14 (2006), pp. 128, ISSN 0031-9007 [17930663], [doi]  [abs]
  91. Chandrasekharan, S; Jiang, FJ, Phase diagram of two-color lattice QCD in the chiral limit, Phys. Rev. D, vol. 74 no. 1 (2006), pp. 014506, American Physical Society (APS), ISSN 1550-7998 [PhysRevD.74.014506], [doi]  [abs]
  92. Chandrasekharan, S, Anomalous Superconductivity in 2+1 dimensional two-color lattice QCD, Phys. Rev. Lett., vol. 97 no. 18 (2006), pp. 182001, ISSN 0031-9007 [17155536], [doi]  [abs]
  93. Chandrasekharan, Shailesh and Strouthos, Costas G., Failure of mean field theory at large N, Phys. Rev. Lett., vol. 94 (2005), pp. 061601 [pdf]  [abs]
  94. Yoo, J; Chandrasekharan, S; Baranger, HU, A Multi-level Algorithm for Quantum-impurity Models, Phys. Rev. E, vol. 71 no. 3 Pt 2B (2005), pp. 036708, cond-mat/0408123, ISSN 1539-3755 [15903634], [doi]  [abs]
  95. Lee, JW; Chandrasekharan, S; Baranger, HU, Quantum Monte Carlo Study of Disordered Fermions, Phys. Rev. B, vol. 72 no. 2 (2005), pp. 024525, cond-mat/0411306, ISSN 1098-0121 [doi]  [abs]
  96. Kaul, RK; Ullmo, D; Chandrasekharan, S; Baranger, HU, Mesoscopic Kondo Problem, Europhys. Lett., vol. 71 no. 6 (2005), pp. 973, cond-mat/0409211 [pdf], [doi]  [abs]
  97. Yoo, J; Chandrasekharan, S; Kaul, RK; Ullmo, D; Baranger, HU, Cluster Algorithms for Quantum Impurity Models and Mesoscopic Kondo Physics, Phys. Rev. B, vol. 71 no. 20 (2005), pp. 201309(R), cond-mat/0411313 [doi]  [abs]
  98. Yoo, J; Chandrasekharan, S; Kaul, RK; Ullmo, D; Baranger, HU, On the Sign Problem in the Hirsch-Fye Algorithm for Impurity Problems, J. Phys. A: Math. and General, vol. 38 no. 48 (2005), pp. 10307, cond-mat/0412771 [pdf], [doi]  [abs]
  99. Chandrasekharan, S; Strouthos, CG, Failure of Mean Field Theory at Large N, Physical Review Letters, vol. 94 no. 6 (2005), pp. 061601, ISSN 0031-9007 [15783719], [doi]  [abs]
  100. Chandrasekharan, Shailesh and Strouthos, Costas G., Connecting lattice QCD with chiral perturbation theory at strong coupling, Phys. Rev. D, vol. 69 (2004), pp. 091502 [pdf]  [abs]
  101. Brower, R. and Chandrasekharan, S. and Riederer, S. and Wiese, U. J., D-theory: Field quantization by dimensional reduction of discrete variables, Nucl. Phys. B, vol. 693 (2004), pp. 149-175 [pdf]  [abs]
  102. Chandrasekharan, S; Wiese, UJ, An introduction to chiral symmetry on the lattice, Prog. Part. Nucl. Phys., vol. 53 no. 2 (2004), pp. 373-418, Elsevier BV [pdf], [doi]  [abs]
  103. Chandrasekharan Shailesh, Chiral and critical behavior in strong coupling QCD, Nucl. Phys. Proc. Suppl., vol. 129 (2004), pp. 578-580, Elsevier BV [pdf], [doi]  [abs]
  104. Chandrasekharan, S; Pepe, M; Steffen, FD; Wiese, UJ, Lattice theories with nonlinearly realized chiral symmetry, Nucl. Phys. Proc. Suppl., vol. 129 (2004), pp. 507-509, Elsevier BV [pdf], [doi]  [abs]
  105. Brower, R; Chandrasekharan, S; Riederer, S; Wiese, UJ, D THEORY: FIELD QUANTIZATION BY DIMENSIONAL REDUCTION OF DISCRETE VARIABLES, Nucl. Phys. B, vol. 693 no. 1-3 (2004), pp. 149 [doi]  [abs]
  106. Chandrasekharan, S; Strouthos, CG, CONNECTING LATTICE QCD WITH CHIRAL PERTURBATION THEORY AT STRONG COUPLING, Physical Review (Rapid Communications), vol. D69 no. 9 (2004), pp. 091502, American Physical Society (APS), ISSN 0556-2821 [doi]  [abs]
  107. Chandrasekharan, S. and Cox, J. and Osborn, J. C. and Wiese, U. J., Meron-Cluster Approach to Systems of Strongly Correlated Electrons, Nucl. Phys. B, vol. 673 (2003), pp. 405-436 [pdf]  [abs]
  108. Chandrasekharan, Shailesh and Jiang, Fu-Jiun, Chiral limit of strongly coupled lattice QCD at finite temperatures, Phys. Rev. D, vol. 68 (2003), pp. 091501 [pdf]  [abs]
  109. Chandrasekharan, S., Connections between quantum chromodynamics and condensed matter physics, Pramana, vol. 61 (2003), pp. 901-910
  110. Adams, David H. and Chandrasekharan, Shailesh, Chiral limit of strongly coupled lattice gauge theories, Nucl. Phys. B, vol. 662 (2003), pp. 220-246 [pdf]  [abs]
  111. Chandrasekharan, S. and Pepe, M. and Steffen, F. D. and Wiese, U. J., Nonlinear realization of chiral symmetry on the lattice, JHEP, vol. 12 (2003), pp. 035 [pdf]  [abs]
  112. Chandrasekharan, Shailesh and Strouthos, Costas G., Kosterlitz-Thouless universality in dimer models, Phys. Rev. D, vol. 68 (2003), pp. 091502 [pdf]  [abs]
  113. S. Chandrasekharan, CHIRAL LIMIT OF STAGGERED FERMIONS AT STRONG COUPLINGS: A LOOP REPRESENTATION, edited by Edwards, Negele and Richards, Nucl. Phys. B (Proceedings Suppl.), vol. 119 (2003), pp. 929  [abs]
  114. Brower, R; Chandrasekharan, S; Negele, JW; Wiese, UJ, QCD at fixed topology, Phys. Lett. B, vol. 560 no. 1-2 (2003), pp. 64-74, Elsevier BV [pdf], [doi]  [abs]
  115. Chandrasekharan Shailesh, Chiral limit of staggered fermions at strong couplings: A loop representation, Nucl. Phys. Proc. Suppl., vol. 119 (2003), pp. 929-931, Elsevier BV [pdf], [doi]  [abs]
  116. Chandrasekharan, S, CONNECTIONS BETWEEN QUANTUM CHROMODYNAMICS AND CONDENSED MATTER PHYSICS, Pramana, vol. 61 no. 5 (2003), pp. 901, Springer Nature [doi]  [abs]
  117. Brower, R; Chandrasekharan, S; Negele, JW; Wiese, UJ, LATTICE QCD AT FIXED TOPOLOGY, Phys. Lett. B, vol. 560 (2003), pp. 64-74  [abs]
  118. Chandrasekharan, S; Pepe, M; Steffen, FD; Wiese, U-J, Nonlinear realization of chiral symmetry on the lattice, Journal of High Energy Physics, vol. 7 no. 12 (2003), pp. 831-863, ISSN 1029-8479  [abs]
  119. Chandrasekharan, S; Strouthos, C, KOSTERLITZ-THOULESS UNIVERSALITY IN DIMER MODELS, Physical Reviews D (Rapid Communications) arXiv:hep-lat/0306034, vol. 68 no. 9 (2003), pp. 091502, American Physical Society (APS), ISSN 0556-2821 [doi]  [abs]
  120. Chandrasekharan, S; Jiang, F-J, CHIRAL LIMIT OF STRONGLY COUPLED LATTICE QCD AT FINITE TEMPERATURES, Physical Reviews D (Rapid Communications), vol. 68 no. 9 (2003), pp. 091501, ISSN 0556-2821 [doi]  [abs]
  121. Chandrasekharan, S; Cox, J; Osborn, JC; Wiese, UJ, MERON CLUSTER APPROACH TO SYSTEMS OF STRONGLY CORRELATED ELECTRONS, Nucl. Phys. B, vol. 673 no. 3 (2003), pp. 405-436, Elsevier BV [doi]  [abs]
  122. Adams, DH; Chandrasekharan, S, CHIRAL LIMIT OF STRONGLY COUPLED LATTICE GAUGE THEORIES, Nucl. Phys. B, vol. 662 no. 1-2 (2003), pp. 220-246, Elsevier BV [doi]  [abs]
  123. Chandrasekharan, S; Pepe, M; Steffen, FD; Wiese, UJ, NON-LINEAR REALIZATION OF CHIRAL SYMMETRY ON THE LATTICE, JHEP, vol. 0312 no. 12 (2003), pp. 035, Springer Nature [0306020v2], [doi]  [abs]
  124. Chandrasekharan, S, UNEXPECTED RESULTS IN THE CHIRAL LIMIT WITH STAGGERED FERMIONS, Physics Letters B, vol. 536 no. 1-2 (January, 2002), pp. 72, Elsevier BV, ISSN 0370-2693 [doi]  [abs]
  125. Brower, R. and Chandrasekharan, S. and Negele, J. W. and Wiese, U. J., Physical observables from lattice QCD at fixed topology, Nucl. Phys. Proc. Suppl., vol. 106 (2002), pp. 581-583 [pdf]  [abs]
  126. Chandrasekharan, S. and Scarlet, B. and Wiese, U. J., From spin ladders to the 2-d O(3) model at non-zero density, Comput. Phys. Commun., vol. 147 (2002), pp. 388-393 [pdf]  [abs]
  127. Chandrasekharan, Shailesh, Unexpected results in the chiral limit with staggered fermions, Phys. Lett. B, vol. 536 (2002), pp. 72-78 [pdf]  [abs]
  128. Chandrasekharan Shailesh, Superconductivity and chiral symmetry breaking with fermion clusters, Nucl. Phys. Proc. Suppl., vol. 106 (2002), pp. 1025-1027, Elsevier BV [pdf], [doi]  [abs]
  129. Chandrasekharan, S; Osborn, JC, Kosterlitz-Thouless universality in a fermionic system, Physical Review B - Condensed Matter and Materials Physics, vol. 66 no. 4 (2002), pp. 451131-451135, ISSN 0163-1829  [abs]
  130. Brower, R; Chandrasekharan, S; Negele, JW; Wiese, UJ, PHYSICAL OBSERVABLES FROM LATTICE QCD AT FIXED TOPOLOGY, Nucl. Phys. B (Proc. Suppl.), vol. 106 (2002), pp. 581, Elsevier BV [doi]  [abs]
  131. Chandrasekharan, S; Scarlet, B; Wiese, UJ, FROM SPIN LADDERS TO THE 2-D O(3) MODEL AT NONZERO DENSITY, Comput. Phys. Commun., vol. 147 no. 1-2 (2002), pp. 388, Elsevier BV [doi]  [abs]
  132. Chandrasekharan, S; Osborn, JC, KOSTERLITZ-THOULESS UNIVERSALITY IN A FERMIONIC SYSTEM, Physical Review B, vol. 66 no. 4 (2002), pp. 045113, American Physical Society (APS) [0109424v1], [doi]  [abs]
  133. Chandrasekharan, S, Novel Quantum Monte Carlo Algorithms for Fermions (October, 2001) [0110018v1]  [abs]
  134. Alford, Mark G. and Chandrasekharan, S. and Cox, J. and Wiese, U. J., Solution of the complex action problem in the Potts model for dense QCD, Nucl. Phys. B, vol. 602 (2001), pp. 61-86 [pdf]  [abs]
  135. Chandrasekharan, Shailesh, Novel quantum Monte Carlo algorithms for fermions (2001) [pdf]  [abs]
  136. Chandrasekharan, S. and Chudnovsky, V. and Schlittgen, B. and Wiese, U. J., Flop transitions in cuprate and color superconductors: From SO(5) to SO(10) unification?, Nucl. Phys. Proc. Suppl., vol. 94 (2001), pp. 449-452 [pdf]  [abs]
  137. Chandrasekharan, Shailesh, QCD at a finite density of static quarks, Nucl. Phys. Proc. Suppl., vol. 94 (2001), pp. 71-78 [pdf]  [abs]
  138. Chandrasekharan, S, QCD AT A FINITE DENSITY OF STATIC QUARKS., Nucl. Phys. B (Proc. Suppl.), vol. 94 no. 1-3 (2001), pp. 71-78, Elsevier BV [doi]  [abs]
  139. Alford, M; Chandrasekharan, S; Cox, J; Wiese, UJ, SOLUTION OF THE COMPLEX ACTION PROBLEM IN THE POTTS MODEL FOR DENSE QCD., Nucl. Phys. B, vol. 602 no. 1-2 (2001), pp. 61, Elsevier BV [doi]  [abs]
  140. Chandrasekharan, S; Chudnovski, V; Schlittgen, B; Wiese, UJ, FLOP TRANSITIONS IN CUPRATE AND COLOR SUPERCONDUTORS From SO(5) to SO(10) unification?, Nucl. Phys. B (Proc. Suppl.), vol. 94 no. 1-3 (2001), pp. 449, Elsevier BV [doi]  [abs]
  141. Chandrasekharan, S; Wiese, U-J, SO(10) Unification of Color Superconductivity and Chiral Symmetry Breaking? (March, 2000) [0003214v1]  [abs]
  142. Chandrasekharan, S. and Cox, J. and Holland, K. and Wiese, U. J., Meron-cluster simulation of a chiral phase transition with staggered fermions, Nucl. Phys. B, vol. 576 (2000), pp. 481-500 [pdf]  [abs]
  143. Chandrasekharan, Shailesh and Wiese, Uwe-Jens, SO(10) unification of color superconductivity and chiral symmetry breaking? (2000) [pdf]  [abs]
  144. Chandrasekharan, Shailesh and Osborn, James C., Critical behavior of a chiral condensate with a meron cluster algorithm, Phys. Lett. B, vol. 496 (2000), pp. 122-128 [pdf]  [abs]
  145. Chandrasekharan Shailesh, Fermion cluster algorithms, Nucl. Phys. Proc. Suppl., vol. 83 no. 1-3 (2000), pp. 774-776 [pdf], [doi]  [abs]
  146. Chandrasekharan, S; Osborn, J, Solving Sign Problems with Meron Algorithms, edited by Landau, DP; Lewis, SP; Schuttler, HB, Springer Proc. Phys., vol. 86 (2000), pp. 28-42, SPRINGER-VERLAG BERLIN, ISSN 0930-8989 [Gateway.cgi]
  147. Chandrasekharan Shailesh, A chiral phase transition using a fermion cluster algorithm, Chin. J. Phys., vol. 38 no. 3 (2000), pp. 696-706, PHYSICAL SOC REPUBLIC CHINA [0001003v1]  [abs]
  148. Chandrasekharan, S; Cox, J; Holland, K; Wiese, UJ, MERON CLUSTER SIMULATION OF A CHIRAL PHASE TRANSITION WITH STAGGERED FERMIONS., Nucl. Phys. B, vol. 576 no. 1-3 (2000), pp. 481-500, Elsevier BV [doi]  [abs]
  149. Chandrasekharan, S; Osborn, JC, CRITICAL BEHAVIOR OF A CHIRAL CONDENSATE WITH A MERON CLUSTER ALGORITHM., Phys. Letts. B, vol. 496 no. 1-2 (2000), pp. 122-128, Elsevier BV, ISSN 0370-2693 [doi]  [abs]
  150. Brower, R; Chandrasekharan, S; Wiese, UJ, QCD as a quantum link model, Physical Review D - Particles, Fields, Gravitation and Cosmology, vol. 60 no. 9 (November, 1999), pp. 1-14, ISSN 0556-2821 [pdf], [doi]  [abs]
  151. Chandrasekharan, S; Scarlet, B; Wiese, U-J, Meron-Cluster Simulation of Quantum Spin Ladders in a Magnetic Field (September, 1999) [9909451v1]  [abs]
  152. Chandrasekharan, S; Wiese, UJ, MERON CLUSTER SOLUTION OF A FERMION SIGN PROBLEM, Phys. Rev. Letts., vol. 86 no. 15 (January, 1999), pp. 3116-3119, American Physical Society (APS) [doi]  [abs]
  153. Chandrasekharan, S. and Scarlet, B. and Wiese, U. J., Meron-Cluster Simulation of Quantum Spin Ladders in a Magnetic Field (1999) [pdf]  [abs]
  154. Chandrasekharan, Shailesh and Wiese, Uwe-Jens, Meron-cluster solution of a fermion sign problem, Phys. Rev. Lett., vol. 83 (1999), pp. 3116-3119 [pdf]  [abs]
  155. Chandrasekharan, Shailesh and others, Anomalous chiral symmetry breaking above the QCD phase transition, Phys. Rev. Lett., vol. 82 (1999), pp. 2463-2466 [pdf]  [abs]
  156. Bhattacharya, Tanmoy and Chandrasekharan, Shailesh and Gupta, Rajan and Lee, Weon-Jong and Sharpe, Stephen R., Non-perturbative renormalization constants using Ward identities, Phys. Lett. B, vol. 461 (1999), pp. 79-88 [pdf]  [abs]
  157. Chandrasekharan, Shailesh, Confinement, chiral symmetry breaking and continuum limits in quantum link models, Nucl. Phys. Proc. Suppl., vol. 73 (1999), pp. 739-741 [pdf]  [abs]
  158. Bhattacharya, T; Chandrasekharan, S; Gupta, R; Lee, W-J; Sharpe, SR, Non-perturbative renormalization constants using Ward identities, Nucl. Phys. Proc. Suppl., vol. 73 no. 1-3 (1999), pp. 276-278, Elsevier BV [pdf], [doi]  [abs]
  159. Chandrasekharan, S, Ginsparg-Wilson fermions: A study in the Schwinger model, Physical Review D - Particles, Fields, Gravitation and Cosmology, vol. 59 no. 9 (1999), pp. 1-8 [pdf]  [abs]
  160. Chandrasekharan, S, Lattice QCD with Ginsparg-Wilson fermions, Physical Review D - Particles, Fields, Gravitation and Cosmology, vol. 60 no. 7 (1999), pp. 1-6 [9805015v3], [doi]  [abs]
  161. Bhattacharya, T; Chandrasekharan, S; Gupta, R; Lee, W; Sharpe, S, NONPERTURBATIVE RENORMALIZATION CONSTANTS USING WARD IDENTITIES., Phys. Letts. B, vol. 461 no. 1-2 (1999), pp. 79-88, Elsevier BV [doi]  [abs]
  162. Chandrasekharan, S, CONFINEMENT, CHIRAL SYMMETRY BREAKING AND CONTINUUM LIMITS IN QUANTUM LINK MODELS, Nucl. Phys. B Proc. Suppl., vol. 73 no. 1-3 (1999), pp. 739-741, Elsevier BV [doi]  [abs]
  163. Chandrasekharan, S; Chen, D; Christ, N; Lee, W; Mawhinney, R; Vranas, P, ANOMALOUS CHIRAL SYMMETRY BREAKING ABOVE THE QCD PHASE TRANSITION, Phys. Rev. Lett., vol. 82 no. 12 (1999), pp. 2463-2466, American Physical Society (APS) [doi]  [abs]
  164. Brower, R; Chandrasekharan, S; Wiese, UJ, QCD AS A QUANTUM LINK MODEL, Phys. Rev. D, vol. 60 no. 9 (1999), pp. 094502, American Physical Society (APS) [9704106v1], [doi]  [abs]
  165. Chandrasekharan, S, GINSPARG-WILSON FERMIONS: A STUDY IN THE SCHWINGER MODEL, Phys. Rev. D, vol. 59 no. 9 (1999), pp. 094502, American Physical Society (APS) [9810007v2], [doi]  [abs]
  166. Chandrasekharan, S, LATTICE QCD WITH GINSPARG-WILSON FERMIONS, Phys. Rev. D, vol. 60 no. 7 (1999), pp. 074503 [pdf], [doi]  [abs]
  167. Beard, B. B. and others, D-theory: Field theory via dimensional reduction of discrete variables, Nucl. Phys. Proc. Suppl., vol. 63 (1998), pp. 775-789 [pdf]  [abs]
  168. Brower, R. and Chandrasekharan, S. and Wiese, U. J., Green's functions from quantum cluster algorithms, Physica A, vol. 261 (1998), pp. 520 [pdf]  [abs]
  169. Orginos, K. and Bietenholz, W. and Brower, R. and Chandrasekharan, S. and Wiese, U. -J., The perfect quark-gluon vertex function, Nucl. Phys. Proc. Suppl., vol. 63 (1998), pp. 904-906 [pdf]  [abs]
  170. Brower, R; Chandrasekharan, S; Wiese, U-J, Green’s functions from quantum cluster algorithms11This work is supported in part by funds provided by the US Department of Energy (DOE) under cooperative research agreement DE-FC02-94ER40818., vol. 261 no. 3 (1998), pp. 520-533  [abs]
  171. Beard, BB; Brower, RC; Chandrasekharan, S; Chen, D; Tsapalis, A; Wiese, UJ, D-THEORY: FIELD THEORY VIA DIMENSIONAL REDUCTION OF DISCRETE VARIABLES, Nucl. Phys. B (Proc. Suppl.), vol. 63 no. 1-3 (1998), pp. 775-789, Elsevier BV [doi]  [abs]
  172. Orginos, K; Bietenholz, W; Brower, R; Chandrasekharan, S; Wiese, UJ, THE PERFECT QUARK GLUON VERTEX FUNCTION, Nucl. Phys. B (Proc. Suppl.), vol. 63 no. 1-3 (1998), pp. 904-906, Elsevier BV [doi]  [abs]
  173. Brower, R; Chandrasekharan, S; Wiese, UJ, GREEN'S FUNCTIONS FROM QUANTUM CLUSTER ALGORITHMS, Physica A, vol. 261 no. 3-4 (1998), pp. 520-533, Elsevier BV [doi]  [abs]
  174. Bietenholz, W. and Brower, R. and Chandrasekharan, S. and Wiese, U. J., Perfect lattice topology: The quantum rotor as a test case, Phys. Lett. B, vol. 407 (1997), pp. 283-289 [pdf]  [abs]
  175. Bietenholz, W. and Brower, R. and Chandrasekharan, S. and Wiese, U. J., Perfect lattice actions for staggered fermions, Nucl. Phys. B, vol. 495 (1997), pp. 285-305 [pdf]  [abs]
  176. Chandrasekharan, S. and Wiese, U. J., Quantum link models: A discrete approach to gauge theories, Nucl. Phys. B, vol. 492 (1997), pp. 455-474 [pdf]  [abs]
  177. Bietenholz, W. and Brower, R. and Chandrasekharan, S. and Wiese, U. J., Progress on perfect lattice actions for QCD, Nucl. Phys. Proc. Suppl., vol. 53 (1997), pp. 921-934 [pdf]  [abs]
  178. Chandrasekharan, Shailesh, A large N chiral transition on a plaquette, Phys. Lett. B, vol. 395 (1997), pp. 83-88 [pdf]  [abs]
  179. Bietenholz, W; Brower, R; Chandrasekharan, S; Wiese, UJ, PERFECT LATTICE ACTIONS FOR STAGGERED FERMIONS, Nucl. Phys. B, vol. 495 no. 1-2 (1997), pp. 285-305, Elsevier BV [doi]  [abs]
  180. Chandrasekharan, S, A LARGE N CHIRAL TRANSITION ON A PLAQUETTE, Phys. Lett. B, vol. 395 no. 1-2 (1997), pp. 83-88, Elsevier BV [doi]  [abs]
  181. Bietenholz, W; Brower, R; Chandrasekharan, S; Wiese, UJ, PERFECT LATTICE TOPOLOGY: THE QUANTUM ROTOR AS A TEST CASE, Phys. Lett. B, vol. 407 no. 3-4 (1997), pp. 283-289, Elsevier BV [doi]  [abs]
  182. Chandrasekharan, S; Wiese, UJ, QUANTUM LINK MODELS: A DISCRETE APPROACH TO GAUGE THEORIES, Nucl. Phys. B, vol. 492 no. 1-2 (1997), pp. 455-474, Elsevier BV [doi]  [abs]
  183. Bietenholz, W; Brower, R; Chandrasekharan, S; Wiese, UJ, PROGRESS ON PERFECT LATTICE ACTIONS FOR QCD, Nucl. Phys. B (Proc. Suppl.), vol. 53 no. 1-3 (1997), pp. 921-934, Elsevier BV [doi]  [abs]
  184. Chandrasekharan, Shailesh and Christ, Norman H., Dirac Spectrum, Axial Anomaly and the QCD Chiral Phase Transition, Nucl. Phys. Proc. Suppl., vol. 47 (1996), pp. 527-534 [pdf]  [abs]
  185. Chandrasekharan, S; Huang, S-Z, Z(3) TWISTED CHIRAL CONDENSATES IN QCD AT FINITE TEMPERATURES, Phys. Rev. D, vol. 53 no. 9 (1996), pp. 5100-5104, ISSN 0556-2821 [10020507], [doi]  [abs]
  186. Chandrasekharan, S; Christ, N, DIRAC SPECTRUM, AXIAL ANOMALY AND THE QCD CHIRAL PHASE TRANSITION, NUcl. Phys. B (Proc. Suppl.), vol. 47 no. 1-3 (1996), pp. 527-534, Elsevier BV [doi]  [abs]
  187. Chandrasekharan, S; Huang, S, Z3 twisted chiral condensates in QCD at finite temperatures, Physical Review D - Particles, Fields, Gravitation and Cosmology, vol. 53 no. 9 (1996), pp. 5100-5104 [pdf]  [abs]
  188. Chandrasekharan, Shailesh, Critical behavior of the chiral condensate at the QCD phase transition, Nucl. Phys. Proc. Suppl., vol. 42 (1995), pp. 475-477 [pdf]  [abs]
  189. Chandrasekharan, S, CRITICAL BEHAVIOR OF THE CHIRAL CONDENSATE AT THE QCD PHASE TRANSITION, Nucl. Phys. B (Proc. Suppl.), vol. 42 no. 1-3 (1995), pp. 475-477, Elsevier BV, ISSN 0920-5632 [doi]  [abs]
  190. Chandrasekharan, Shailesh, Anomaly cancellation in (2+1)-dimensions in the presence of a domain wall mass, Phys. Rev. D, vol. 49 (1994), pp. 1980-1987 [pdf]  [abs]
  191. Chandrasekharan, S., Fermions with a domain wall mass: Explicit Greens function and anomaly cancellation, Nucl. Phys. Proc. Suppl., vol. 34 (1994), pp. 579-582
  192. Chandrasekharan, S, FERMIONS WITH A DOMAIN WALL MASS: EXPLICIT GREENS FUNCTION AND ANOMALY CANCELLATION, Nucl. Phys. B (Proc. Suppl.), vol. 34 no. C (1994), pp. 579-582, Elsevier BV, ISSN 0920-5632 [doi]  [abs]
  193. Chandrasekharan, S, ANOMALY CANCELLATION IN (2+1)-DIMENSIONS IN THE PRESENCE OF A DOMAIN WALL MASS, Phys. Rev. D, vol. 49 no. 4 (1994), pp. 1980-1987, ISSN 0556-2821 [10017182], [doi]  [abs]

Papers Accepted

  1. Haiyuan Zou, Yuzhi Liu, Chen-Yen Lai, J. Unmuth-Yockey, A. Bazavov, Z.Y. Xie, T. Xiang, S. Chandrasekharan, S. -W. Tsai, Y. Meurice, Towards quantum computing for the classical O(2) model, Phys. Rev. A (2014) [5238]  [abs] [reputed journal]

Papers Submitted

  1. Singh, H; Bhattacharya, T; Chandrasekharan, S; Gupta, R, Vacuum Entanglement Harvesting in the Ising Model (February, 2023) [doi]  [abs] [submitted]
  2. Hanqing Liu, Emilie Huffman, Shailesh Chandrasekharan, Ribhu K. Kaul, Quantum Criticality of Anti-ferromagnetism and Superconductivity with Relativity (September, 2021)  [abs] [submitted]
  3. D. Banerjee and S. Chandrasekharan, Sub-leading conformal dimensions at the O(4) Wilson-Fisher fixed point (2021)  [abs]
  4. V. Ayyar and S. Chandrasekharan, Massive fermions without fermion bilinear condensates, arXiv:1410.6474 (submitted to Phys. Rev. D) (October, 2014) [6474]  [abs]

Preprints

  1. S. Chandrasekharan and U.-J. Wiese, Partition Functions of Strongly Correlated Electron Systems as 'Fermionants'., arXiv:1108.2461 (July, 2011) [2461]  [abs]
  2. S. Chandrasekharan and U.-J. Wiese, SO(10) UNIFICATION OF COLOR SUPERCONDUCTIVITY AND CHIRAL SYMMETRY BREAKING? (2000) (DUKE-TH-00-203,MIT-CTP-2961.)  [abs]
  3. S. Chandrasekharan, B. Scarlet and U.-J. Wiese, MERON CLUSTER SIMULATION OF QUANTUM SPIN LADDERS IN A MAGNETIC FIELD (1999) (DUKE-TH-99-197, MIT-CTP-2904.)