Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#257974] of David B. Dunson


Papers Published

  1. Bhattacharya, A; Dunson, D, Nonparametric Bayes classification and hypothesis testing on manifolds, Journal of Multivariate Analysis, vol. 111 (2012), pp. 1-19, ISSN 0047-259X [doi]
    (last updated on 2018/02/24)

    Our first focus is prediction of a categorical response variable using features that lie on a general manifold. For example, the manifold may correspond to the surface of a hypersphere. We propose a general kernel mixture model for the joint distribution of the response and predictors, with the kernel expressed in product form and dependence induced through the unknown mixing measure. We provide simple sufficient conditions for large support and weak and strong posterior consistency in estimating both the joint distribution of the response and predictors and the conditional distribution of the response. Focusing on a Dirichlet process prior for the mixing measure, these conditions hold using von Mises-Fisher kernels when the manifold is the unit hypersphere. In this case, Bayesian methods are developed for efficient posterior computation using slice sampling. Next we develop Bayesian nonparametric methods for testing whether there is a difference in distributions between groups of observations on the manifold having unknown densities. We prove consistency of the Bayes factor and develop efficient computational methods for its calculation. The proposed classification and testing methods are evaluated using simulation examples and applied to spherical data applications. © 2012 Elsevier Inc.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320