Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#319308] of Alessandro Arlotto

Papers Published

  1. Arlotto, A; Gans, N; Chick, S, Optimal employee retention when inferring unknown learning curves, edited by Johansson, B; Jain, S; Montoya-Torres, J; Hugan, J; Yücesan, E, Proceedings Winter Simulation Conference (2010), pp. 1178-1188, IEEE [doi]
    (last updated on 2021/07/30)

    This paper formulates an employer's hiring and retention decisions as an infinite-armed bandit problem and characterizes the structure of optimal hiring and retention policies. We develop approximations that allow us to explicitly calculate these policies and to evaluate their benefit. The solution involves a balance of two types of learning: the learning that reflects the improvement in performance of employees as they gain experience, and the Bayesian learning of employers as they infer properties of employees' abilities to inform the decision of whether to retain or replace employees. Numerical experiments with Monte Carlo simulation suggest that the gains to active screening and monitoring of employees can be substantial. ©2010 IEEE.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320