Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#338563] of Alessandro Arlotto

Papers Published

  1. Arlotto, A; Xie, X, Logarithmic regret in the dynamic and stochastic knapsack problem with equal rewards, Stochastic Systems, vol. 10 no. 2 (June, 2020), pp. 170-191 [doi]
    (last updated on 2021/06/16)

    We study a dynamic and stochastic knapsack problem in which a decision maker is sequentially presented with items arriving according to a Bernoulli process over n discrete time periods. Items have equal rewards and independent weights that are drawn from a known nonnegative continuous distribution F. The decision maker seeks to maximize the expected total reward of the items that the decision maker includes in the knapsack while satisfying a capacity constraint and while making terminal decisions as soon as each item weight is revealed. Under mild regularity conditions on the weight distribution F, we prove that the regret—the expected difference between the performance of the best sequential algorithm and that of a prophet who sees all of the weights before making any decision—is, at most, logarithmic in n. Our proof is constructive. We devise a reoptimized heuristic that achieves this regret bound.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320