MATH 107.01 HOMEWORK #17 SOLUTIONS

Problem 5.3.1. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation

$$T\begin{bmatrix}x_1\\x_2\end{bmatrix} = \begin{bmatrix}x_1+x_2\\x_1-x_2\end{bmatrix}.$$

- (a) Find $[T]^{\alpha}_{\alpha}$ where α is the standard basis of \mathbb{R}^2 . (b) Let β be the basis for \mathbb{R}^2 consisting of

$$\begin{bmatrix} 1\\ -1 \end{bmatrix}, \begin{bmatrix} -2\\ 1 \end{bmatrix}.$$

- Find the change of basis matrix from α to β .
- (c) Find the change of basis matrix from β to α .
- (d) Find $[T]^{\beta}_{\beta}$.
- (e) Find $[v]_{\beta}$ where

$$v = \begin{bmatrix} -2\\ 3 \end{bmatrix}.$$

- (f) Find $[T(v)]_{\beta}$. (g) Use (f) to find T(v).

Solution. (a) Note that

$$Te_1 = \begin{bmatrix} 1\\1 \end{bmatrix} = e_1 + e_2$$
$$Te_2 = \begin{bmatrix} 1\\-1 \end{bmatrix} = e_1 - e_2.$$

This gives

$$[T]^{\alpha}_{\alpha} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$

(b) Let $\mathbf{1}: \mathbb{R}^2 \to \mathbb{R}^2$ be the identity transformation. Then

$$\mathbf{1} \begin{bmatrix} 1\\-1 \end{bmatrix} = \begin{bmatrix} 1\\-1 \end{bmatrix} = e_1 - e_2$$
$$\mathbf{1} \begin{bmatrix} -2\\1 \end{bmatrix} = \begin{bmatrix} -2\\1 \end{bmatrix} = -2e_1 + e_2.$$

So, the change of basis matrix from α to β is

$$\begin{bmatrix} \mathbf{1} \end{bmatrix}_{\beta}^{\alpha} = \begin{bmatrix} 1 & -2 \\ -1 & 1 \end{bmatrix}.$$

(c) The change of basis matrix from β to α is

$$\begin{bmatrix} \mathbf{1} \end{bmatrix}_{\alpha}^{\beta} = \left(\begin{bmatrix} \mathbf{1} \end{bmatrix}_{\beta}^{\alpha} \right)^{-1} = \begin{bmatrix} -1 & -2 \\ -1 & -1 \end{bmatrix}.$$

(d) Compute

$$[T]^{\beta}_{\beta} = [\mathbf{1}]^{\beta}_{\alpha} [T]^{\alpha}_{\alpha} [\mathbf{1}]^{\alpha}_{\beta} = \begin{bmatrix} -1 & -2\\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -2\\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -4 & 7\\ -2 & 4 \end{bmatrix}.$$

(e) Here,

$$[v]_{\beta} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

where c_1 and c_2 satisfy

$$c_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + c_2 \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}.$$

Since

$$\operatorname{rref} \begin{bmatrix} 1 & -2 & | & -2 \\ -1 & 1 & | & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | & -4 \\ 0 & 1 & | & -1 \end{bmatrix},$$

$$\operatorname{reg} = -1 \quad \operatorname{Hence}$$

we have $c_1 = -4$ and c_2 = -1. Hence

$$[v]_{\beta} = \begin{bmatrix} -4\\ -1 \end{bmatrix}.$$

(f) Compute

$$\begin{bmatrix} T(v) \end{bmatrix}_{\beta} = \begin{bmatrix} T \end{bmatrix}_{\beta}^{\beta} \begin{bmatrix} v \end{bmatrix}_{\beta} = \begin{bmatrix} -4 & 7 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} -4 \\ -1 \end{bmatrix} = \begin{bmatrix} 9 \\ 4 \end{bmatrix}$$

(g) From (f), we have

$$T(v) = 9 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + 4 \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -5 \end{bmatrix}.$$

Problem 5.3.5. Let $T: P_2 \rightarrow P_2$ be the linear transformation

$$T(ax^{2} + bx + c) = a(x+1)^{2} + b(x+1) + c.$$

- (a) Find [T]^α_α where α is the standard basis x², x, 1 for P₂.
 (b) Let β be the basis x² 1, x² + 1, x + 1 for P₂. Find the change of basis matrix from α to β .
- (c) Find the change of basis matrix from β to α .
- $\begin{array}{l} (d) \quad Find \ [T]_{\beta}^{\beta}.\\ (e) \quad Find \ [v]_{\beta} \ where \ v=x^2+x+1. \end{array}$
- (f) Find $[T(v)]_{\beta}$.
- (g) Use (f) to find T(v).

Solution. (a) Note that

$$T(x^{2}) = (x+1)^{2} = x^{2} + 2x + 1$$
$$T(x) = x + 1$$
$$T(1) = 1.$$

This gives

$$[T]^{\alpha}_{\alpha} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}.$$

(b) Let $\mathbf{1}: P_2 \to P_2$ be the identity transformation. Then

$$\mathbf{1}\left(x^2 - 1\right) = x^2 - 1$$

 $\mathbf{2}$

MATH 107.01

$$1(x^2+1) = x^2+1$$

 $1(x+1) = x+1.$

So, the change of basis matrix from α to β is

$$[\mathbf{1}]^{\alpha}_{\beta} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix}.$$

(c) The change of basis matrix from β to α is

$$[\mathbf{1}]_{\alpha}^{\beta} = \left([\mathbf{1}]_{\beta}^{\alpha} \right)^{-1} = \begin{bmatrix} 1/2 & 1/2 & -1/2 \\ 1/2 & -1/2 & 1/2 \\ 0 & 1 & 0 \end{bmatrix}.$$

(d) Compute

$$\begin{split} [T]^{\beta}_{\beta} &= [\mathbf{1}]^{\beta}_{\alpha} [T]^{\alpha}_{\alpha} [\mathbf{1}]^{\alpha}_{\beta} = \begin{bmatrix} 1/2 & 1/2 & -1/2 \\ 1/2 & -1/2 & 1/2 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 3/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \\ 2 & 2 & 1 \end{bmatrix}. \end{split}$$

(e) Here,

$$[v]_{\beta} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

where c_1, c_2 , and c_3 satisfy

$$c_1(x^2-1) + c_2(x^2+1) + c_3(x+1) = x^2 + x + 1.$$

This gives the system

$$c_1 + c_2 = 1$$

 $c_3 = 1$
 $-c_1 + c_2 + c_3 = 1.$

Since

$$\operatorname{rref} \begin{bmatrix} 1 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & 1 \\ -1 & 1 & 1 & | & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & | & 1/2 \\ 0 & 1 & 0 & | & 1/2 \\ 0 & 0 & 1 & | & 1 \end{bmatrix},$$

the system has solution $c_1 = 1/2$, $c_2 = 1/2$, and $c_3 = 1$. Hence

$$\left[v\right]_{\beta} = \begin{bmatrix} 1/2\\1/2\\1 \end{bmatrix}.$$

(f) Compute

$$\begin{bmatrix} T(v) \end{bmatrix}_{\beta} = \begin{bmatrix} T \end{bmatrix}_{\beta}^{\beta} \begin{bmatrix} v \end{bmatrix}_{\beta} = \begin{bmatrix} 3/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1/2 \\ 1/2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1/2 \\ 3 \end{bmatrix}.$$

(g) By (f), we have

$$T(v) = \frac{1}{2} (x^2 - 1) + \frac{1}{2} (x^2 + 1) + 3 (x + 1) = x^2 + 3x + 3.$$

Problem 5.3.9. Let v_1, v_2, v_3 form a basis α for a vector space V and let $T: V \rightarrow$ V be a linear transformation

$$T(v_1) = v_1 - v_2$$

$$T(v_2) = v_2 - v_3$$

$$T(v_3) = v_3 - v_1.$$

- (a) Find $[T]^{\alpha}_{\alpha}$. (b) Find $[T(v)]_{\alpha}$ where $v = v_1 2v_2 + 3v_3$. (c) Use (b) to find T(v) in terms of v_1, v_2, v_3 .

Solution. (a) Here,

$$[T]^{\alpha}_{\alpha} = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}.$$

(b) Here,

$$\begin{bmatrix} T(v) \end{bmatrix}_{\alpha} = \begin{bmatrix} T \end{bmatrix}_{\alpha}^{\alpha} \begin{bmatrix} v \end{bmatrix}_{\alpha} = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 \\ -3 \\ 5 \end{bmatrix}.$$

(c) From (b), we have

$$T(v) = -2v_1 - 3v_2 + 5v_3.$$