Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke





.......................

.......................


Publications [#318271] of Robert Bryant

search www.ams.org.

Papers Published

  1. Bryant, R, On extremals with prescribed Lagrangian densities, in Manifolds and geometry (Pisa, 1993), Symposia Mathematica, edited by Bartolomeis, P; Tricerri, F; Vesentini, E, vol. 36 (1996), pp. 86-111, Cambridge University Press, ISBN 0-521-56216-3 [MR99a:58043], [dg-ga/9406001]
    (last updated on 2018/07/21)

    Author's Comments:
    This manuscript studies some examples of the family of problems where a Lagrangian is given for maps from one manifold to another and one is interested in the extremal mappings for which the Lagrangian density takes a prescribed form. The first problem is the study of when two minimal graphs can induce the same area function on the domain without differing by trivial symmetries. The second problem is similar but concerns a different `area Lagrangian' first investigated by Calabi. The third problem classified the harmonic maps between spheres (more generally, manifolds of constant sectional curvature) for which the energy density is a constant multiple of the volume form. In the first and third cases, the complete solution is described. In the second case, some information about the solutions is derived, but the problem is not completely solved.

    Abstract:
    This article studies some examples of the family of problems where a Lagrangian is given for maps from one manifold to another and one is interested in the extremal mappings for which the Lagrangian density takes a prescribed form. The first problem is the study of when two minimal graphs can induce the same area function on the domain without differing by trivial symmetries. The second problem is similar but concerns a different `area Lagrangian' first investigated by Calabi. The third problem classified the harmonic maps between spheres (more generally, manifolds of constant sectional curvature) for which the energy density is a constant multiple of the volume form. In the first and third cases, the complete solution is described. In the second case, some information about the solutions is derived, but the problem is not completely solved.

 

dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320