Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke





.......................

.......................


Publications [#320301] of Robert Bryant

search www.ams.org.

Books

  1. Bryant, RL, Rigidity and quasi-rigidity of extremal cycles in Hermitian symmetric spaces (March, 2001) [math.DG/0006186]
    (last updated on 2017/12/11)

    Author's Comments:
    I use local differential geometric techniques to prove that the algebraic cycles in certain extremal homology classes in Hermitian symmetric spaces are either rigid (i.e., deformable only by ambient motions) or quasi-rigid (roughly speaking, foliated by rigid subvarieties in a nontrivial way). These rigidity results have a number of applications: First, they prove that many subvarieties in Grassmannians and other Hermitian symmetric spaces cannot be smoothed (i.e., are not homologous to a smooth subvariety). Second, they provide characterizations of holomorphic bundles over compact Kahler manifolds that are generated by their global sections but that have certain polynomials in their Chern classes vanish (for example, c_2 = 0, c_1c_2 - c_3 = 0, c_3 = 0, etc.).
     

    Abstract:
    I use local differential geometric techniques to prove that the algebraic cycles in certain extremal homology classes in Hermitian symmetric spaces are either rigid (i.e., deformable only by ambient motions) or quasi-rigid (roughly speaking, foliated by rigid subvarieties in a nontrivial way). These rigidity results have a number of applications: First, they prove that many subvarieties in Grassmannians and other Hermitian symmetric spaces cannot be smoothed (i.e., are not homologous to a smooth subvariety). Second, they provide characterizations of holomorphic bundles over compact Kahler manifolds that are generated by their global sections but that have certain polynomials in their Chern classes vanish (for example, c_2 = 0, c_1c_2 - c_3 = 0, c_3 = 0, etc.).

 

dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320