Department of Mathematics
 Search | Help | Login

Math @ Duke





.......................

.......................


Publications [#372524] of Fan Wei

Papers Published

  1. Liu, CH; Wei, F, Phase transition of degeneracy in minor-closed families, Advances in Applied Mathematics, vol. 146 (May, 2023) [doi]
    (last updated on 2025/07/04)

    Abstract:
    Given an infinite family G of graphs and a monotone property P, an (upper) threshold for G and P is a “fastest growing” function p:N→[0,1] such that limn→∞⁡Pr⁡(Gn(p(n))∈P)=1 for any sequence (Gn)n∈N over G with limn→∞⁡|V(Gn)|=∞, where Gn(p(n)) is the random subgraph of Gn such that each edge remains independently with probability p(n). In this paper we study the upper threshold for the family of H-minor free graphs and the property of being (r−1)-degenerate and apply it to study the thresholds for general minor-closed families and the properties for being r-choosable and r-colorable. Even a constant factor approximation for the upper threshold for all pairs (r,H) is expected to be challenging by its close connection to a major open question in extremal graph theory. We determine asymptotically the thresholds (up to a constant factor) for being (r−1)-degenerate (and r-choosable, respectively) for a large class of pairs (r,H), including all graphs H of minimum degree at least r and all graphs H with no vertex-cover of size at most r, and provide lower bounds for the rest of the pairs of (r,H).

 

dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320