Math @ Duke

Publications [#319358] of Henry Pfister
Papers Published
 Yedla, A; Pfister, HD; Narayanan, KR, Universality for the noisy SlepianWolf problem via spatial coupling,
Ieee International Symposium on Information Theory Proceedings
(October, 2011),
pp. 25672571, IEEE, ISBN 9781457705953 [doi]
(last updated on 2019/07/23)
Abstract: We consider a noisy SlepianWolf problem where two correlated sources are separately encoded and transmitted over two independent binary memoryless symmetric channels. Each channel capacity is assumed to be characterized by a single parameter which is not known at the transmitter. The receiver has knowledge of both the source correlation and the channel parameters. We call a system universal if it retains nearcapacity performance without channel knowledge at the transmitter. Kudekar et al. recently showed that terminated lowdensity paritycheck (LDPC) convolutional codes (a.k.a. spatiallycoupled LDPC ensembles) can have beliefpropagation thresholds that approach their maximum aposteriori thresholds. This was proven for binary erasure channels and shown empirically for binary memoryless symmetric channels. They also conjectured that the principle of spatial coupling is very general and the phenomenon of threshold saturation applies to a very broad class of graphical models. In this work, we derive an area theorem for the joint decoder and empirically show that threshold saturation occurs for this problem. As a result, we demonstrate nearuniversal performance for this problem using the proposed spatiallycoupled coding system. A similar result is also discussed briefly for the 2user multipleaccess channel. © 2011 IEEE.


dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821
 
Mathematics Department
Duke University, Box 90320
Durham, NC 277080320

