|
Math @ Duke
|
Publications [#343275] of Henry Pfister
Papers Published
- Kim, B-H; Yedla, A; Pfister, HD, Message-Passing Inference on a Factor Graph for Collaborative Filtering
(April, 2010)
(last updated on 2023/06/01)
Abstract: This paper introduces a novel message-passing (MP) framework for the
collaborative filtering (CF) problem associated with recommender systems. We
model the movie-rating prediction problem popularized by the Netflix Prize,
using a probabilistic factor graph model and study the model by deriving
generalization error bounds in terms of the training error. Based on the model,
we develop a new MP algorithm, termed IMP, for learning the model. To show
superiority of the IMP algorithm, we compare it with the closely related
expectation-maximization (EM) based algorithm and a number of other matrix
completion algorithms. Our simulation results on Netflix data show that, while
the methods perform similarly with large amounts of data, the IMP algorithm is
superior for small amounts of data. This improves the cold-start problem of the
CF systems in practice. Another advantage of the IMP algorithm is that it can
be analyzed using the technique of density evolution (DE) that was originally
developed for MP decoding of error-correcting codes.
|
|
|
|
dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821
| |
Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320
|
|