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Abstract. We define a locally Sierpinski Julia set to be a Julia
set of an elliptic function which is a Sierpinski curve in each fun-
damental domain for the lattice. We give sufficient conditions for
which a Weierstrass elliptic ℘ function is quadratic-like, and we
then use these results to prove the existence of locally Sierpinski
Julia sets for certain elliptic functions. We show this results in nat-
urally occurring Sierpinski curves in the plane, sphere, and torus
as well.

1. Introduction

A Sierpinski curve, also called a Sierpinski carpet, is a planar set
that contains a homeomorphic copy of any compact, connected one
topological dimensional planar set. It was introduced by Sierpinski in
1916 and was described by G. T.Whyburn [25] to be the following set:

The curve is obtained very simply as the residual set
remaining when one begins with a square and applies
the operation of dividing it into nine equal squares and
omitting the interior of the center one, then repeats the
operation on each of the surviving 8 squares, then re-
peats again on the surviving 64 squares, and so on in-
definitely.

A characterization of a Sierpinski curve, defined to be a set homeomor-
phic to the set described above, was given in [25] where it was shown
that a set satisfying the following definition is homeomorphic to the
classical Sierpinski carpet and is therefore a universal planar set.

Definition 1.1. An S-curve, is a subset S of the plane such that

(1) S is compact;
(2) S is connected; (the first two properties are that S should be a

planar continuum.)
(3) S is nowhere dense; (an S-curve has topological dimension one);
(4) S is locally connected;
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(5) S = C \ ∪αUα, where each Uα is a simply connected open set
and ∂Uα’s are pairwise disjoint simple closed curves.

Whenever S is a subset of a 2-dimensional manifold M (not necessarily
the plane) satisfying Properties (1)-(5), then we call S a Sierpinski
curve.

Remark 1.1. The following from [25] is used in later examples in
Section 5. Let γ be any simple closed curve lying in an S-curve S, and
let I denote the interior of γ. If no complementary domain boundary
∂U lying in I ∪γ intersects γ, then T = S∩ (γ∪I) is again an S-curve.

The properties listed in Definition 1.1 are immediately reminiscent of
properties of Julia sets arising in complex dynamics of rational maps,
so this is a natural place in which to search for such curves, and indeed
Milnor and Tan Lei in 1993 were the first to give an example [22]. Soon
thereafter many parametrized families of examples were produced by
Devaney, the second author, and others in [5],[9], and [10], and other
publications. This work is nicely summarized in [8].

Recent studies on the Weierstrass elliptic ℘ function, [14], [15], [16],and
[19] suggest that Sierpinski curves occur as Julia sets in this setting as
well; unlike the rational setting, instead of getting a single Sierpinski
carpet for a Julia set in this setting we obtain a “Sierpinski carpet tile”
that then is used to tile the entire plane. We refer to this phenomenon
as wall-to-wall Sierpinski carpeting and say the Julia set is locally Sier-
pinski. The Julia set of an elliptic function is not compact in the plane
due to the double periodicity with respect to a lattice; so Property 1
in Definition 1.1 is never satisfied. Therefore we extend the definition
to make precise the notion of wall-to-wall Sierpinski carpeting; (all of
the terms used in Definition 1.2 are defined in Section 2 of this paper).

Definition 1.2. A locally Sierpinski Julia set of an elliptic function f
is a Julia set J(f) of a meromorphic function f with the property that
there exists a period parallelogram Q for the period lattice Λ such that
J(f) ∩Q is a Sierpinski curve.

However, on C∞ = C ∪∞, the Riemann sphere, we have a compact
Julia set and we will show that for some elliptic functions we have
Sierpinski curve Julia sets on the sphere. Furthermore, we can view
the Julia sets on the compact torus C/Γ where Γ is the lattice of periods
of the functions; so we obtain in a natural way Sierpinski curves on the
torus. The purpose of this paper is to prove the existence of locally
Sierpinski Julia sets for certain lattices and for many Weierstrass elliptic
℘ functions that are not pairwise conformally conjugate. In order to
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Figure 1. The “original” Sierpinski curve
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Figure 2. A Sierpinski curve Julia set for a rational map
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Figure 3. A locally Sierpinski Julia set for an elliptic
map with period lattice shown

do this, and of independent interest, we give sufficient conditions (on
the lattice) for which an elliptic ℘ function is quadratic-like.

In Figure 2 we show a Sierpinski curve Julia set for the rational
map of the form R(z) = z3 + λ/z3 studied by the second author in
[10], while in Figure 3 we show a Julia set comprised of wall-to-wall
Sierpinski carpeting. In Figure 4 we show one Sierpinski curve carpet
tile. In each of the figures, the Sierpinski Julia set is represented by
the blue points.
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Figure 4. A single Sierpinski carpet tile

The paper is organized as follows. In Section 2 we outline the basic
dynamics of elliptic functions. Section 3 summarizes some results on
hyperbolic elliptic functions and connected Julia sets. The main results
of the paper are given in Sections 4 and 5. We first give sufficient
conditions under which a Weierstrass elliptic ℘ function is quadratic
like, and we then use these results in Section 5 to prove the existence
of locally Sierpinski Julia sets for elliptic functions.

The first author thanks Bob Devaney for his hospitality and fruitful
discussions during a visit to Boston University, and the second author
thanks him for his supervision of his Ph.D. thesis on topics related to
the subject of this paper.

2. Preliminaries on the dynamics of Weierstrass elliptic
℘ function

Let λ1, λ2 ∈ C\{0} such that λ2/λ1 /∈ R, and define Λ = [λ1, λ2] : =
{mλ1 + nλ2 : m,n ∈ Z}; the generators are not unique. We view
Λ as a group acting on C by translation, each ω ∈ Λ inducing the
transformation of C:

Tω : z 7→ z + ω.

Definition 2.1. A closed, connected subset Q of C is defined to be a
fundamental region for Λ if

(1) for each z ∈ C, Q contains at least one point in the same Λ-orbit
as z;

(2) no two points in the interior of Q are in the same Λ-orbit.

If Q is any fundamental region for Λ, then for any s ∈ C, the set

Q + s = {z + s : z ∈ Q}
is also a fundamental region. If Q is a parallelogram we call it a period
parallelogram for Λ.
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The “appearance” of a lattice Λ = [λ1, λ2] is determined by the ratio
τ = λ2/λ1. (We generally choose the generators so that Im (τ) > 0.)
If Λ = [λ1, λ2], and k 6= 0 is any complex number, then kΛ is the
lattice defined by taking kλ for each λ ∈ Λ; kΛ is said to be similar
to Λ. Similarity is an equivalence relation between lattices, and an
equivalence class of lattices is called a shape.

Definition 2.2. (1) Λ = [λ1, λ2] is real rectangular if there exist
generators such that λ1 is real and λ2 is purely imaginary. Any
lattice similar to a real rectangular lattice is rectangular.

(2) Λ = [λ1, λ2] is real rhombic if there exist generators such that
λ2 = λ1. Any similar lattice is rhombic.

(3) A lattice Λ is square if iΛ = Λ. (Equivalently, Λ is square if it
is similar to a lattice generated by [λ, λ i], for some λ > 0.)

(4) A lattice Λ is triangular if Λ = e2πi/3Λ in which case a period
parallelogram can be made from two equilateral triangles.

In each of cases (1) − (3) the period parallelogram with vertices
0, λ1, λ2, and λ3 := λ1 + λ2 can be chosen to be a rectangle, rhombus,
or square respectively.

Definition 2.3. An elliptic function is a meromorphic function in C
which is periodic with respect to a lattice Λ.

For any z ∈ C and any lattice Λ, the Weierstrass elliptic function is
defined by

℘Λ(z) =
1

z2
+

∑

w∈Λ\{0}

(
1

(z − w)2
− 1

w2

)
.

Replacing every z by −z in the definition we see that ℘Λ is an even
function. The map ℘Λ is meromorphic, periodic with respect to Λ, and
has order 2.

The derivative of the Weierstrass elliptic function is also an elliptic
function which is periodic with respect to Λ defined by

℘′Λ(z) = −2
∑
w∈Λ

1

(z − w)3
.

The Weierstrass elliptic function and its derivative are related by the
differential equation

(1) ℘′Λ(z)2 = 4℘Λ(z)3 − g2℘Λ(z)− g3,

where g2(Λ) = 60
∑

w∈Λ\{0} w−4 and g3(Λ) = 140
∑

w∈Λ\{0} w−6.

The numbers g2(Λ) and g3(Λ) are invariants of the lattice Λ in the
following sense: if g2(Λ) = g2(Λ

′) and g3(Λ) = g3(Λ
′), then Λ = Λ′.
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Furthermore given any g2 and g3 such that g3
2 − 27g2

3 6= 0 there exists
a lattice Λ having g2 = g2(Λ) and g3 = g3(Λ) as its invariants [12].

Theorem 2.1. [12] For Λτ = [1, τ ], the functions gi(τ) = gi(Λτ ), i =
2, 3, are analytic functions of τ in the open upper half plane Im(τ) > 0.

We have the following homogeneity in the invariants g2 and g3 [15].

Lemma 2.2. For lattices Λ and Λ′, Λ′ = kΛ ⇔
g2(Λ

′) = k−4g2(Λ) and g3(Λ
′) = k−6g3(Λ).

Theorem 2.3. [17] The following are equivalent:

(1) ℘Λ(z) = ℘Λ(z);
(2) Λ is a real lattice;
(3) g2, g3 ∈ R.

For any lattice Λ, the Weierstrass elliptic function and its derivative
satisfy the following properties: for k ∈ C\{0},

(2) ℘kΛ(ku) =
1

k2
℘Λ(u), (homogeneity of ℘Λ),

℘′kΛ(ku) =
1

k3
℘′Λ(u), (homogeneity of ℘′Λ).

The critical points and values of the Weierstrass elliptic function
on an arbitrary lattice Λ = [λ1, λ2] are as follows. For j = 1, 2, we
have ℘Λ(λj − z) = ℘Λ(z) for all z. Taking derivatives of both sides we
obtain −℘′Λ(λj− z) = ℘′Λ(z), so at z = λ1/2, λ2/2, or λ3/2, we see that
℘′Λ(z) = 0. We use the notation

e1 = ℘Λ(
λ1

2
), e2 = ℘Λ(

λ2

2
), e3 = ℘Λ(

λ3

2
)

to denote the critical values. Since e1, e2, e3 are the (distinct) zeros of
Equation 1, we also write

(3) ℘′Λ(z)2 = 4(℘Λ(z)− e1)(℘Λ(z)− e2)(℘Λ(z)− e3).

Equating like terms in Equations 1 and 3, we obtain

(4) e1 + e2 + e3 = 0, e1e3 + e2e3 + e1e2 =
−g2

4
, e1e2e3 =

g3

4
.

In general, similar lattices do not result in conformally conjugate
elliptic functions [15]. We can start with a fixed shape lattice, say
Λ = [1, τ ] and produce many types of dynamics as was shown in [14]-
[16]. Within a given simlarity class (shape), Equation (2), is used to
produce infinitely many lattices with fixed critical points (i.e. with real
superattracting fixed points). These examples will be shown in many
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Figure 5. Graph of ℘Λ|R with a superattracting fixed point

cases to yield locally Sierpinski Julia sets. The following proposition
generalizes a result from [15] for real lattices.

Proposition 2.1. Let Λ = [1, τ ] be a lattice such that the critical

value ℘Λ(1/2) = ε 6= 0. If m is any odd integer and k = 3
√

2ε/m
(taking any root) then the lattice Γ = kΛ has a superattracting fixed
point at mk/2.

Proof. Equation (2) for ℘′kΛ implies that k/2 is a critical point for ℘Γ.
Since m is odd, periodicity implies that ℘Γ(mk/2) = ℘Γ(k/2). Further,
the homogeneity property implies that

℘Γ(
mk

2
) = ℘Γ(

k

2
) = ℘kΛ(

k

2
) =

1

k2
℘Λ(

1

2
) =

ε

k2
=

mk

2
.

¤

Corollary 2.4. Every similarity class contains a lattice Λ for which
℘Λ has a superattracting fixed point.

Proof. We apply Proposition 2.1, and we need only to check that
℘Λ(1

2
) = ε 6= 0 for each (nonreal) choice of τ . A critical value ej = 0 if

and only if g3 = 0, by Equation 4. This holds if and only if the lattice is
square, in which case τ = i. However in this case we know that e3 = 0,
and e1 = ℘Λ(1/2) 6= 0.

¤
Figure 5 shows the graph of ℘Λ on R for a real square lattice which

has a superattracting fixed point.

2.1. Fatou and Julia sets for elliptic functions. We review the
basic dynamical definitions and properties for meromorphic functions
which appear in [1], [4], [7] and [8]. Let f : C→ C∞ be a meromorphic
function. The Fatou set F (f) is the set of points z ∈ C∞ such that
{fn : n ∈ N} is defined and normal in some neighborhood of z. The
Julia set is the complement of the Fatou set on the sphere, J(f) =
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C∞\F (f). Notice that C∞\
⋃

n≥0 f−n(∞) is the largest open set where

all iterates are defined. Since f(C∞\
⋃

n≥0 f−n(∞)) ⊂ C∞\
⋃

n≥0 f−n(∞),
Montel’s theorem implies that

J(f) =
⋃
n≥0

f−n(∞).

Let Crit(f) denote the set of critical points of f , i.e.,

Crit(f) = {z : f ′(z) = 0}.
If z0 is a critical point then f(z0) is a critical value. For each lattice,
℘Λ has three critical values and no asymptotic values. The singular set
Sing(f) of f is the set of critical and finite asymptotic values of f and
their limit points. A function is called Class S if f has only finitely
many critical and asymptotic values; for each lattice Λ, every elliptic
function with period lattice Λ is of Class S. The postcritical set of ℘Λ

is:

P (℘Λ) =
⋃
n≥0

℘n
Λ(e1 ∪ e2 ∪ e3).

For a meromorphic function f , a point z0 is periodic of period p
if there exists a p ≥ 1 such that f p(z0) = z0. We also call the set
{z0, f(z0), . . . , f

p−1(z0)} a p-cycle. The multiplier of a point z0 of period
p is the derivative (fp)′(z0). A periodic point z0 is called attracting,
repelling, or neutral if |(f p)′(z0)| is less than, greater than, or equal
to 1 respectively. If |(fp)′(z0)| = 0 then z0 is called a superattracting
periodic point. As in the case of rational maps, the Julia set is the
closure of the repelling periodic points [1].

Suppose U is a connected component of the Fatou set. We say that
U is preperiodic if there exists n > m ≥ 0 such that fn(U) = fm(U),
and the minimum of n −m = p for all such n,m is the period of the
cycle.

Since every elliptic function is of Class S the basic dynamics are
similar to those of rational maps with the exception of the poles. The
first result holds for all Class S functions as was shown in [4] (Theorem
12) and [23].

Theorem 2.5. For any lattice Λ, the Fatou set of an elliptic func-
tion fΛ with period lattice Λ has no wandering domains and no Baker
domains.

In particular, Sullivan’s No Wandering Domains Theorem holds in
this setting so all Fatou components of fΛ are preperiodic. Because
there are only finitely many critical values, we have a bound on the
number of attracting periodic points that can occur.
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The next result was proved in [15]; it is only known for the Weier-
strass elliptic function.

Theorem 2.6. For any lattice Λ, ℘Λ has no cycle of Herman rings.

We summarize this discussion with the following result.

Theorem 2.7. For any lattice Λ, at most three different types of for-
ward invariant Fatou cycles can occur for ℘Λ, and each periodic Fatou
component contains one of these:

(1) a linearizing neighborhood of an attracting periodic point;
(2) a Böttcher neighborhood of a superattracting periodic point;
(3) an attracting Leau petal for a periodic parabolic point. The pe-

riodic point is in J(℘Λ);
(4) a periodic Siegel disk containing an irrationally neutral periodic

point.

2.1.1. Symmetries of the Julia and Fatou sets.

Lemma 2.8. If Λ is any lattice and fΛ is an elliptic function with
period lattice Λ, then

(1) J(fΛ) + Λ = J(fΛ), and
(2) F (fΛ) + Λ = F (fΛ).

The algebraic and analytic symmetry of the Weierstrass elliptic func-
tion manifests itself in a large amount of symmetry in each Julia set
arising from an elliptic function. The proof of Theorem 2.9 is given in
[14].

Theorem 2.9. If Λ = [λ1, λ2] is any lattice then

(1) J(℘Λ) + Λ = J(℘Λ) and F (℘Λ) + Λ = F (℘Λ).
(2) (−1)J(℘Λ) = J(℘Λ) and (−1)F (℘Λ) = F (℘Λ).

(3) J(℘Λ) = J(℘Λ) and F (℘Λ) = F (℘Λ).
(4) If Λ is square, then eπi/2J(℘Λ) = J(℘Λ) and eπi/2F (℘Λ) =

F (℘Λ).
(5) If Λ is triangular, then e2πi/3J(℘Λ) = J(℘Λ) and e2πi/3F (℘Λ) =

F (℘Λ). Moreover, e2πi/3℘Λ(z) = ℘Λ(e2πi/3z) for all z ∈ C \ Λ.

In addition to a basic Julia set pattern repeating on each fundamental
period, we also see symmetry within the period parallelogram.

Proposition 2.2. For the lattice Λ = [λ1, λ2], J(℘Λ) and F (℘Λ) are
symmetric with respect to any critical point λ1/2 + Λ, λ2/2 + Λ, and
(λ1+λ2)/2+Λ. That is, if c is any critical point of ℘Λ, then c+z ∈ J(℘Λ)
if and only if c− z ∈ J(℘Λ).

In particular, if Fo is any component of F (℘Λ) that contains a critical
point c, then Fo is symmetric with respect to c.
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3. Connected Julia sets and hyperbolic Weierstrass ℘Λ

functions

We give sufficient conditions under which J(℘Λ) is connected if ℘Λ is
the Weierstrass elliptic ℘ function with period lattice Λ. The proof of
the next result appears in [16]. It uses the fact that although there are
infinitely many critical points for ℘Λ, there are exactly three critical
values and ℘Λ is locally two-to-one in each fundamental region.

Theorem 3.1. If Λ is a lattice such that each critical value of ℘Λ that
lies in the Fatou set is the only critical value in that component, then
J(℘Λ) is connected. In particular, if each Fatou component contains
either 0 or 1 critical value, then J(℘Λ) is connected.

We now turn to the definition of a hyperbolic elliptic function; the
concept of hyperbolicity for a meromorphic function is similar to that
for a rational map, but the equivalent notions in the rational settings
are not always the same for meromorphic functions (e.g., see [23]).

Definition 3.1. We say that an elliptic function is hyperbolic if J(f)
is disjoint from P (f).

We adapt the following result from [23] (Theorem C) to our setting.
We define the set

An(f) = {z ∈ C : fn is not analytic at z}.
Since f is elliptic,

An(f) =
n⋃

j=1

f−j({∞}).

We therefore denote the set of prepoles for f by

A =
⋃
n≥1

An.

We say that ω is an order k prepole if ℘k
Λ(ω) = ∞; so a pole is an order

1 prepole.

Theorem 3.2. [23] If an elliptic function f is hyperbolic then there
exist K > 1 and c > 0 such that

|(fn)′(z)| > cKn |fn(z)|+ 1

|z|+ 1
,

for each z ∈ J(f) \ An(f), n ∈ N.
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Remark 3.1. For a fixed lattice Λ, and elliptic function f = fΛ, we
have that f(z + λ) = f(z) and f ′(z + λ) = f ′(z) for every λ ∈ Λ.
Therefore we can prove the following standard result about hyperbolic
functions; the proof appears in [16].

Theorem 3.3. An elliptic function f is hyperbolic if and only if there
exist K > 1 and C > 0, C = C(Λ), such that

(5) |(fn)′(z)| > CKn,

for each z ∈ J(f) \ An(f), n ∈ N.

Corollary 3.4. If f is hyperbolic, then there exists an r > 1, an s ∈ N,
and a neighborhood U of J(f), such that

|(f s)′(z)| > r for all z ∈ U \ As(f).

3.1. Hyperbolic elliptic functions on triangular lattices. We be-
gin with some properties of ℘Λ for Λ a triangular period lattice.

Proposition 3.1. [15] and [16] Assume Λ is triangular.

(1) Then g2 = 0; in this case e1, e2, e3 all have the same modulus
and are cube roots of g3/4. Furthermore, ei is real for some
i = 1, 2, 3 if and only if g3 is real, if and only if Λ is a real
lattice.

(2) g3 > 0 if and only if some ej > 0, in which case there exists
λ > 0 such that Λ = [λeπi/3, λe−πi/3].

(3) The postcritical set P (℘Λ) is contained in three forward invari-

ant sets: one set α =
⋃
n≥0

℘n
Λ(e1), and the sets e2π/3α and e4π/3α.

(These sets are not necessarily disjoint.)
(4) J(℘Λ) is connected.

Corollary 3.5. Assume Λ is triangular and there is an attracting pe-
riodic point. Then the following hold:

(1) If p0 denotes the attracting periodic point, then p1 = e2π/3p0

and p2 = e4π/3p0 are attracting periodic points as well.
(2) ℘Λ is hyperbolic.

The main result of this section then is the following.

Theorem 3.6. If Λ is a triangular lattice and ℘Λ has an attracting
cycle, then J(℘Λ) is hyperbolic and connected .

Proof. The result follows from Proposition 3.1 and Corollary 3.5. ¤
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In order to determine which triangular lattices give rise to Fatou
sets such that the boundary of each simply connected component is
a simple closed curve, we need to apply the theory of polynomial-like
mappings (see Figures 3 and 4).

4. Quadratic-like elliptic functions

In this section we show that for many lattices the Weierstrass el-
liptic ℘ function acts locally like a quadratic polynomial in the sense
introduced by Douady and Hubbard in [11]. (This was conjectured and
illustrated by the first author and Koss in [15].) While the section is of
independent interest, it is also useful for determining local connectivity
of the Julia set of a Weierstrass elliptic function. For the discussion
which follows we need the following results from [12] regarding period
parallelograms for elliptic functions.

Proposition 4.1. If Λ = [λ1, λ2] is any lattice and u ∈ C, let Ωu =
{u + sλ1 + tλ2 : 0 ≤ s, t < 1}. Then ℘Λ : Ωu → C∞ is onto and
two-to-one except at the points that lie in the Λ-orbit of 0, λ1/2, λ2/2,
and (λ1 + λ2)/2 (the critical points).

Corollary 4.1. For any lattice Λ, if u is a lattice point or half lattice
point, then Ωu is a fundamental period parallelogram containing in its
interior no poles and one critical point, and ℘Λ : Ωu → C∞ is analytic,
onto, and two-to-one counting multiplicity.

Let int Ωu denote the interior of Ωu. Our goal is to export to our
setting the following result from Mañé, Sad, and Sullivan [20]. A simple
closed curve γ is a quasicircle if it is the image of a circle under a
quasiconformal homeomorphism (of the sphere); quasicircles are locally
connected.

Theorem 4.2. If p is a quadratic polynomial with an attracting fixed
point, then J(p) is a quasicircle.

Definition 4.1. Let U and V be simply connected bounded open sub-
sets of C such that U ⊂ V is compact. A map f : U → V is a
polynomial-like map if f is a d-fold covering map. A quadratic-like map
has d = 2. A polynomial-like map of degree d has d− 1 critical points
in U .

We denote a quadratic-like map by (f : U, V ). The filled Julia set
Kf of (f : U, V ) is the set of points which do not escape U under f ,
i.e.,

Kf = {z ∈ U |fn(z) ∈ U for all n ≥ 0}.
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Two polynomial-like maps f and g are hybrid equivalent if there is a
quasiconformal conjugacy φ between f and g defined on a neighborhood
of their filled Julia sets.

The following result was shown in [11] in the setting of rational maps,
but since it is a local result, it applies equally well to elliptic functions.

Proposition 4.2. For a polynomial-like map f , K(f) is connected if
and only if it contains every critical point of f . If K(f) is connected,
and f is of degree d then f is hybrid equivalent to a polynomial of
degree d.

We are now in a position to prove:

Theorem 4.3. Consider a lattice Λ such that ℘Λ has the following
properties:

• ℘Λ has an attracting fixed point q;
• the forward invariant Fatou component Fo containing q has ex-

actly one critical value and one critical point in it;
• there is a period parallelogram Ωu, with u a lattice or half lattice

point, such that

Fo ⊂ int Ωu.

• there are no other critical values of ℘Λ contained in int Ωu.

We define P = ℘Λ|Ωu. Then there exists an open set O ⊂ Ωu such
that (P : O,P(O)) is a quadratic-like map and ∂K(P) is a quasicircle.

Proof. Let Λ = [λ1, λ2] be a lattice satisfying the hypotheses above.
Our hypothesis on Fo implies that it is simply connected and contained
in one fundamental period by [15]. Furthermore Fo contains the fixed
point q of ℘Λ. By hypothesis we can find a lattice or half lattice point
u satisfying the hypothesis, and applying Corollary 4.1, there are poles
of ℘Λ on the boundary of the parallelogram Ωu and none lie in the
interior; so ℘Λ is analytic and contains exactly one critical value on
int Ωu. We define the sets V = int Ωu and O = P−1(V ); i.e.,O is the
connected component of ℘−1

Λ V containing q. Clearly P(O) = V . Since
P maps Ωu two-to-one onto C∞, and all of the poles of P are on the
boundary O, we have:

(1) O is homeomorphic to a disk,
(2) ℘Λ is degree 2 on O, and
(3) ℘Λ(O) contains O and is homeomorphic to a disk.

The first two statements are clear; we prove the third. Since V
contains exactly one critical value, then ℘−1

Λ (V ) is a single simply con-
nected region in each fundamental period, bounded by a simple closed
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curve and containing a critical point on the interior of each parallel-
ogram of the form Ω(u+mλ1+nλ2),m, n ∈ Z; the set O is just the com-
ponent of ℘−1

Λ (V ) contained in Ωu. Since by hypothesis Fo is forward
invariant and Fo ⊂ V , then Fo ⊂ O and therefore P maps O onto V
by a ramified two-fold covering by Corollary 4.1.

Then Definition 4.1 and Proposition 4.2 tell us that (P : O,P(O))
is quadratic-like. Theorem 4.2 gives that ∂K(P) is a quasicircle.

¤
There are many lattices for which the associated function ℘Λ satis-

fies the hypotheses of Theorem 4.3. We prove the existence of some
examples here.

4.1. Examples of quadratic-like elliptic functions.

Theorem 4.4. Suppose Λ is a real rectangular square lattice or a real
triangular lattice with g3 > 0, and suppose that ℘Λ has a real attracting
fixed point po such that the forward invariant Fatou component Fpo con-
tains at most one critical value. Then for each forward invariant Fatou
component F of ℘Λ there is an open set G and a period parallelogram
Ω of Λ such that

F ⊂ G ⊂ Ω.

Proof. Assume first that Λ = [λ, λi] is rectangular square for some
λ > 0. By [14] (Proposition 6.7.2), the attracting fixed point po > 0 is
the only non-repelling cycle and we have that the immediate attracting
basin Fpo = F contains the positive critical value e1 > 0 which satisfies:

0 ≤ noλ < e1 ≤ po < (no + 1)λ

for some nonnegative integer no. Since e3 = 0 is a pole, it is in the
Julia set; by hypothesis e2 /∈ F . We claim therefore that F intersects
exactly two quadrants in the plane: I and IV . If F were to intersect
quadrant II or III, then by symmetry with respect to the origin and
each axis, e2 = −e1 ∈ F , a contradiction. Furthermore F cannot
intersect the imaginary axis because it is open and would therefore
intersect quadrant II, and by symmetry, III. By the symmetry arising
from the periodicity of ℘Λ, it follows that F does not intersect any lines
of the form <(z) = mλ, m ∈ Z (the vertical lines at lattice points).

Moreover we claim that F cannot intersect any line of the form
=(z) = (2m + 1)λ/2, m ∈ Z (the horizontal half lattice lines). By
periodicity of ℘Λ it is enough to consider points of the form z = a + λ

2
i

for 0 ≤ a ≤ λ
2
. But it is well-known (cf. [12]) that for a rectangular

square lattice, the horizontal line segment from 0 + λ
2
i to λ

2
+ λ

2
i maps
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under ℘Λ onto the horizontal line segment from −e1 to 0 along the
negative real axis. In other words, its image does not lie in quadrants
I and IV , so these lines form boundary lines for F .

In particular, we have just shown that F is completely contained in
the period square Ω with vertices (going clockwise around the square):

noλ + (λ/2)i, (no + 1)λ + (λ/2)i, (no + 1)λ− (λ/2)i, noλ− (λ/2)i.

This is illustrated in Figure 6 for no = 0 . By [12] and [14] (Lemma
4.4), we know that the lines with rectangular equations y = x and all
parallel lines of the form y = x+mλ, m ∈ Z, all map to the nonnegative
imaginary axis, and lines y = −x, y = −x + mλ, m ∈ Z, map to the
non-positive imaginary axis. The intersection of any two lines of this
form are precisely the critical points of the form: z = (m/2)(λ + iλ),
m ∈ Z; we know that these map to the origin or are poles, depending
on whether m is even or odd.

We therefore consider the open square S bounded by the lines y = x,
y = −x, y = λ−x, y = −λ+x, and its translation Sno = S +noλ ⊂ Ω.
Each square Sm,m ∈ Z maps two-to-one onto the open right half plane
(quadrants I and IV ) except at the one critical point in Sm; by our
construction, ∂Sm maps onto the imaginary axis and the point at ∞.

We claim that F ⊂ Sno ⊂ Ω. We have already shown that F ⊂
Sno ⊂ Ω. If F contains a point in ∂Sno , then by continuity of ℘Λ

and forward invariance of F , F contains points arbitrarily close to the
line <(z) = noλ, which we have shown cannot happen. Since F is
bounded, it must be a bounded distance from all poles (lattice points)
and prepoles, which are the vertices of Sno . Therefore the result holds
for square lattices using G = Sno .

We now turn to the case of a real triangular lattice with real attract-
ing fixed point po. We argue as in the square lattice case; the immediate
attracting basin Fpo lies in quadrants I and IV . In the triangular case
we have symmetry of the Fatou set about each axis, origin, and with
respect to rotation through 2π/3 radians. Furthermore our assump-
tions and Proposition 3.5 imply that there are three disjoint forward
invariant Fatou components; from this we can conclude that F = Fpo

cannot cross the imaginary axis. By Proposition 3.1 we can choose as
generators of Λ the vector λeπi/3 and its conjugate; let Ω be the period
parallelogram containing e1 ∈ F. There is a smaller interior region S in
Ω consisting of points sent into quadrants I and IV . Its description is
more complicated than for the square case (cf. [12] and Figure 7), but
its boundary is an analytic curve. The rest of the proof is the same as
for the square case. Moreover, there are two other forward invariant
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7. Quadrant
preimages for a
real triangular lat-
tice

components of F (℘Λ), namely e2πi/3F and e4πi/3F , and the result holds
for these by symmetry.

¤
In Figures 7 and 6 we show the regions of a period parallelogram

which get mapped under ℘Λ to Quadrants I (the white points) andIV
(the black points)for square and triangular lattices respectively. The
points colored gray get mapped onto the remaining two quadrants.

Theorem 4.5. Suppose Λ is a real rectangular square lattice or a real
triangular lattice with g3 > 0, and suppose that ℘Λ has a real attract-
ing fixed point po such that the forward invariant Fatou component Fpo

contains at most one critical value. Then ℘Λ restricted to the inte-
rior of the (appropriately chosen) period parallelogram containing po is
quadratic-like.

Proof. We apply Theorems 4.4 and 4.3. ¤
Corollary 4.6. Under the hypotheses of Theorem 4.5, J(℘Λ) is locally
connected.

Proof. The hypotheses imply that F (℘Λ) consists of a countable union
of simply connected open disks whose boundaries are quasicircles. The
result follows from Theorem 4.3, and the fact that quasicircles are
locally connected.
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¤

Corollary 4.7. Suppose Λ is a real square lattice or a real triangular
lattice with g3 > 0, and ℘Λ has a superattracting fixed point. Then ℘Λ

is quadratic-like and J(℘Λ) is locally connected.

5. Examples of locally Sierpinski Julia sets

5.1. Triangular lattices. The space of Weierstrass elliptic ℘ func-
tions with triangular period lattices was studied by the first author
and Koss in [15]. It was shown there that there the hyperbolic param-
eters are quasiconformally stable, so Corollary 4.7 is true much more
generally.

Theorem 5.1. If Λ is a real triangular lattice with g3 > 0, and ℘Λ has
an attracting fixed point, then J(℘Λ) is a Sierpinski curve on C∞ and
J(℘Λ) is locally Sierpinski.

Proof. Suppose we have proved that J(℘Λ) is a Sierpinski curve on C∞;
we now consider generators of Γ of the form [γ, e2πi/3γ], with γ ∈ R,
and use these to form the boundary of a period parallelogram Q. By
Proposition 5.6 of [16], we have that the intersection of J(℘Λ) with the
boundary of (this particular) Q is a Cantor set. Setting JQ = J(℘Λ)∩Q,
it follows from our verification of the properties in Definition 1.1 that
the outer curve of JQ is a simple closed curve homeomorphic to the
graph of the Cantor function (instead of pieces of intervals between
Cantor set points we have pieces of quasicircles). We then apply Re-
mark 1.1 to the period parallelogram JQ to obtain a locally Sierpinski
curve.

We now turn to the proof that J(℘Λ) is a Sierpinski curve on C∞; we
show the conditions of Definition 1.1 are satisfied. By Theorem 3.6 and
Corollary 4.6 we have that J(℘Λ) is connected and locally connected.
Since the Julia set is closed and is not all of C∞ we know that it is
nowhere dense and compact on C∞. It remains to check Property (5)
of Definition 1.1.

By Corollary 3.5 there are three attracting fixed points; let us denote
the attracting fixed points by p1, p2, p3, and each immediate basin of
attraction by A1, A2, and A3. Since pj is an attracting fixed point and
Λ is a triangular lattice, we know that no other critical value tends to pj

apart from ej. Therefore, the Fatou set of ℘Λ consists of Aj, j = 1, 2, 3
and all of the preimages.

We only need to check that the boundaries of pairwise disjoint com-
plementary regions of J(℘Λ) are disjoint simple closed curves. The
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boundaries of complementary regions of J(℘Λ) are precisely the bound-
aries of the preimages of the Aj’s. If ∂Aj is a simple closed curve, our
hypothesis implies that its preimages will be simple closed curves as
well.

By Theorem 4.5 we are guaranteed that Λ satisfies the hypotheses of
Theorem 4.3. Therefore, by the theory of polynomial-like mappings we
know that the boundary of Aj is a quasicircle and therefore a simple
closed curve.

Finally we need to show that disjoint Fatou components have disjoint
boundaries. Any Fatou component of ℘Λ is a component of ℘n

Λ(Aj) for
some n ≤ 0 and some j = 1, 2, 3. Let W1 and W2 be two distinct Fatou
components and assume that there is a point q ∈ ∂W1 ∩ ∂W2. There
are two cases:
Case 1: Both components terminate at the same fixed component Aj.
Then there exists an integer k > 0 such that ℘k

Λ(W1) = ℘k
Λ(W2) while

℘k−1
Λ (W1) 6= ℘k−1

Λ (W2); i.e., ℘Λ takes ℘k−1
Λ (W1) and ℘k−1

Λ (W2), two
disjoint open sets, onto the same set. Further, ℘k−1

Λ (q) ∈ ∂℘k−1
Λ (W1) ∩

℘k−1
Λ (W2). Hence, ℘k−1

Λ (q) must be a critical point for ℘Λ. But if a
critical point is in ∂℘k

Λ(W1), then we have a critical value in ∂℘k+1
Λ (W1).

This is not possible, however, since ∂℘k+1
Λ (W1) ⊂ J(℘Λ) and we know

that none of our critical values are in the Julia set since ℘Λ is hyperbolic.
Case 2: W1 and W2 terminate at different fixed components, say A1

and A2 respectively. We note that we can relabel sets if necessary so
that e2πi/3A1 = A2. Then there exists an integer k > 0 such that
e2πi/3℘k

Λ(W1) = ℘k
Λ(W2) while e2πi/3℘k−1

Λ (W1) 6= ℘k−1
Λ (W2). Then q ∈

∂W1 ∩ ∂W2 implies that ℘k
Λ(q) ∈ A1 ∩A2. However it follows from the

proof of Theorem 4.4 that A1 ∩ A2 = ∅, so no point q exists.
Therefore, there is no point on the boundary of two pairwise disjoint

complementary regions of J(℘Λ).
¤

5.2. Nonhyperbolic examples: square lattices. We discuss the
case of square lattices here; the argument is basically the same as for
the previous example with some small changes. We begin with a general
result about the dynamics of ℘Λ when Λ is a square lattice.

Proposition 5.1. Suppose Λ is a square lattice and is generated by
λ and λi for some nonzero λ ∈ C, and let ℘Λ denote the Weierstrass
elliptic ℘ function with period lattice Λ.

(1) g3 = 0; therefore the possible postcritical values are e3 = 0, e1 =√
g2/2, and e2 = −e1, where g2 is a nonzero complex number;
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(2) P (℘Λ) includes ∞, and e3 ∈ J(℘Λ). Furthermore, since e1 =

−e2, and ℘Λ is even, P (℘Λ) =
⋃

n≥0 ℘n
Λ(e1) ∪ {e2, 0,∞}, (so is

completely determined by the forward orbit of e1).
(3) There is at most one attracting orbit;
(4) if zo is a superattracting fixed point for ℘Λ then J(℘Λ) is con-

nected;
(5) For every lattice Λo = [λo, λoi] λo ∈ C with a superattracting

fixed point zo, there is a neighborhood U of λo, U ⊂ C such that
for every λ ∈ U , the associated function ℘Λ has an attracting
fixed point z(λ), there is exactly one critical value and one
critical point in its immediate attracting basin, A(λ), and A(λ)
is simply connected. Hence J(℘Λ) is connected for all Λ ∈ U .

Proof. Properties 1,2 and 3 were shown in [14] and [15]. Property 4
was also shown in [14] and is subsumed by 5. To show 5, suppose zo

is a superattracting fixed point of ℘Λo . Since the fixed point and its
derivative vary continuously (even analytically) in λ, nearby all maps
have attracting fixed points. In [16], Proposition 6.3, it was proved
that the Julia set moves continuously as λ varies in this setting. The
result then follows from (4).

¤

We can now prove the following.

Theorem 5.2. If Λ is a real rectangular square lattice and ℘Λ has
an attracting fixed point, then J(℘Λ) is a Sierpinski curve on C∞ and
J(℘Λ) is locally Sierpinski.

Proof. We denote the attracting fixed point by p and its immediate
basin of attraction by Ap. Since p is an attracting fixed point and Λ
is a square lattice, by Proposition 5.1 we know that two of the critical
values tend to p; the third critical value is a pole. Therefore, the Fatou
set of ℘Λ consists of Ap and all of its preimages. Since p is attracting
we know that Ap is simply connected and that Ap ⊂ Ωu where Ωu is
a period square as in Theorem 4.3. Having all of our critical values
accounted for with e1 ∈ Ap and e2 = −e1 strictly inside one of the
(disjoint) preimages of Ap not containing p, we know that all of the
preimages of the Ap are also simply connected. Hence, J(℘Λ) is the
Riemann sphere minus a countable number of simply connected open
sets. Therefore J(℘Λ) is connected. The local connectivity of J(℘Λ)
follows from the fact that it is quadratic-like near the fixed point.

Since the Julia set is closed and is not all of C∞ we know that it
is nowhere dense and compact on C∞. Therefore, we only need to
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check that the boundaries of pairwise disjoint complementary regions
of J(℘Λ) are disjoint simple closed curves.

The boundaries of complementary regions of J(℘Λ) are precisely the
boundaries of the preimages of Ap. To show that all of these bound-
aries are simple closed curves, it suffices to show that ∂Ap is a simple
closed curve. This follows since all critical points are accounted for,
and therefore if ∂Ap is a simple closed curve, this will guarantee that
its preimages are simple closed curves.

By Theorem 4.4 we have that Λ satisfies the hypotheses of Propo-
sition 4.3. Therefore, by the theory of polynomial-like mappings we
know that the boundary of Ap is a quasicircle and therefore a simple
closed curve.

Finally we need to show that disjoint Fatou components have disjoint
boundaries. Any Fatou component of ℘Λ is a component of ℘n

Λ(Ap) for
some n ≤ 0. Let W1 and W2 be two Fatou components and assume
that there is a point q ∈ ∂W1 ∩ ∂W2. There exists some k > 0 such
that ℘k

Λ(W1) = ℘k
Λ(W2) while ℘k−1

Λ (W1) 6= ℘k−1
Λ (W2). We have ℘Λ

taking ℘k−1
Λ (W1) and ℘k−1

Λ (W2), two disjoint open sets, onto the same
set. Further, ℘k−1

Λ (q) ∈ ∂℘k−1
Λ (W1) ∩ ℘k−1

Λ (W2). Hence, ℘k−1
Λ (q) must

be a critical point for ℘Λ. But if a critical point is in ∂℘k
Λ(W1), then

we have a critical value in ∂℘k+1
Λ (W1). This is not possible, however,

since ∂℘k+1
Λ (W1) ⊂ J(℘Λ) and we know that the only critical point in

J(℘Λ) is a pole; i.e., there are no critical values in J(℘Λ) ∩ C.
Therefore, we can have no point in the boundary of two pairwise

disjoint complementary regions of J(℘Λ) and it follows that J(℘Λ) is a
Sierpinski curve on C∞.

We show that J(℘Λ) is locally Sierpinski as in the previous result.
We consider generators of the form [γ, γi] for the lattice, with γ > 0.
We then apply Proposition 5.5 of [16] to see that forming the square
period parallelogram Q with vertices 0, γ, γi, and γ + γi, JQ has a
Cantor set intersection with ∂Q. Arguing as in Theorem 5.1 we have
a locally Sierpinski Julia set.

¤

We show a typical locally Sierpinski carpet tile in Figure 8.

5.3. Constructing the Julia set for a square lattice with a su-
perattracting fixed point. Suppose we have a square lattice which
has a superattracting fixed point, or we are at a lattice which is nearby
so we have an attracting fixed point. Then we have a simply connected
immediate attracting basin, Ao, in some period parallelogram Q.
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Figure 8. A single Sierpinski carpet tile for a square lattice

The preimage of Ao in Q is just itself and there is a copy of it,
Ao + ω, ω ∈ Λ in each period parallelogram. (Since there is a single
critical point in Ao it maps two-to-one onto itself in Q.)

Therefore the set ℘−2
Λ (Ao) has infinitely many simply connected sets

in Q; the two largest ones are the preimages of Ao (see Figures 9 and
10), and as |ω| gets larger so the the set Ao + ω gets closer to ∞, its
preimage in Q is smaller (near the pole at 0). This repeats indefinitely
until we get:

J(℘Λ) = C∞ \ ∪∞j=0℘
−j
Λ Ao,

which is illustrated in Figures 11 and 12.

5.4. Sierpinski curves on the torus and planar S-curves. Sup-
pose we have a lattice Λ for which we have a locally Sierpinski Julia
set resulting from an attracting fixed point as above. We let Fo denote
a forward invariant component of F (℘Λ) corresponding to an attract-
ing fixed point po. By mapping the fixed point po to ∞ via a Mobius
transformation, we send the region Fo to a neighborhood of ∞. The
boundary of Fo is a simple closed curve as shown above. We can then
apply Remark 1.1 to obtain a planar S-curve. This is illustrated in
Figures 13 (obtained from a square lattice) and 14. In Figure 14 the
Julia set is green, while the complementary regions are colored shades
of blue according to which of the three attracting fixed points each
Fatou component is attracted.

Furthermore, if we identify fundamental regions for ℘Λ, we can view
J(℘Λ) on C/Λ, a torus, and for the examples above we have a Sierpinski
curve on T 2.
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