Papers Published
Abstract:
We study in this work convolution groups generated by completely monotone sequences related to the ubiquitous time-delay memory effect in physics and engineering. In the first part, we give an accurate description of the convolution inverse of a completely monotone sequence and show that the deconvolution with a completely monotone kernel is stable. In the second part, we study a discrete fractional calculus defined by the convolution group generated by the completely monotone sequence c(1) = (1, 1, 1,..), and show the consistency with time-continuous Riemann-Liouville calculus, which may be suitable for modeling memory kernels in discrete time series.