Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#243792] of Mauro Maggioni

Papers Published

  1. Mahadevan, S; Maggioni, M, Value function approximation with diffusion wavelets and Laplacian eigenfunctions, in University of Massachusetts, Department of Computer Science Technical Report TR-2005-38; Proc. NIPS 2005, Advances in Neural Information Processing Systems (December, 2005), pp. 843-850, ISSN 1049-5258
    (last updated on 2019/02/20)

    We investigate the problem of automatically constructing efficient representations or basis functions for approximating value functions based on analyzing the structure and topology of the state space. In particular, two novel approaches to value function approximation are explored based on automatically constructing basis functions on state spaces that can be represented as graphs or manifolds: one approach uses the eigenfunctions of the Laplacian, in effect performing a global Fourier analysis on the graph; the second approach is based on diffusion wavelets, which generalize classical wavelets to graphs using multiscale dilations induced by powers of a diffusion operator or random walk on the graph. Together, these approaches form the foundation of a new generation of methods for solving large Markov decision processes, in which the underlying representation and policies are simultaneously learned.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320