Math @ Duke

Publications [#243273] of Paul S. Aspinwall
Papers Published
 Aspinwall, PS; Greene, BR; Morrison, DR, CalabiYau moduli space, mirror manifolds and spacetime topology change in string theory,
Nuclear Physics B, vol. 416 no. 2
(March, 1994),
pp. 414480, Elsevier BV [doi]
(last updated on 2019/04/24)
Abstract: We analyze the moduli spaces of CalabiYau threefolds and their associated conformally invariant nonlinear σmodels and show that they are described by an unexpectedly rich geometrical structure. Specifically, the Kähler sector of the moduli space of such CalabiYau conformal theories admits a decomposition into adjacent domains some of which correspond to the (complexified) Kähler cones of topologically distinct manifolds. These domains are separated by walls corresponding to singular CalabiYau spaces in which the spacetime metric has degenerated in certain regions. We show that the union of these domains is isomorphic to the complex structure moduli space of a single topological CalabiYau spacethe mirror. In this way we resolve a puzzle for mirror symmetry raised by the apparent asymmetry between the Kähler and complex structure moduli spaces of a CalabiYau manifold. Furthermore, using mirror symmetry, we show that we can interpolate in a physically smooth manner between any two theories represented by distinct points in the Kähler moduli space, even if such points correspond to topologically distinct spaces. Spacetime topology change in string theory, therefore, is realized by the most basic operation of deformation by a truly marginal operator. Finally, this work also yields some important insights on the nature of orbifolds in string theory. © 1994.


dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821
 
Mathematics Department
Duke University, Box 90320
Durham, NC 277080320

