Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#358254] of Yuan Gao


Papers Published

  1. Gao, Y; Liu, JG; Luo, T; Xiang, Y, Revisit of the peierls-nabarro model for edge dislocations in Hilbert space, Discrete and Continuous Dynamical Systems Series B, vol. 22 no. 11 (January, 2020) [doi]
    (last updated on 2022/01/22)

    In this paper, we revisit the mathematical validation of the Peierls–Nabarro (PN) models, which are multiscale models of dislocations that incorporate the detailed dislocation core structure. We focus on the static and dynamic PN models of an edge dislocation in Hilbert space. In a PN model, the total energy includes the elastic energy in the two half-space continua and a nonlinear potential energy, which is always infinite, across the slip plane. We revisit the relationship between the PN model in the full space and the reduced problem on the slip plane in terms of both governing equations and energy variations. The shear displacement jump is determined only by the reduced problem on the slip plane while the displacement fields in the two half spaces are determined by linear elasticity. We establish the existence and sharp regularities of classical solutions in Hilbert space. For both the reduced problem and the full PN model, we prove that a static solution is a global minimizer in a perturbed sense. We also show that there is a unique classical, global in time solution of the dynamic PN model.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320