Definition 1. A graph is a tuple $\gamma = (V(\gamma), H(\gamma), \pi, \sigma)$ consisting of
- a finite set $V(\gamma)$ whose elements are called the vertices of γ
- a finite set $H(\gamma)$ whose elements are called the half edges of γ
- a map $\pi: H(\gamma) \rightarrow V(\gamma)$
- an involution σ on $H(\gamma)$.

Definition 2. Let $\gamma = (V(\gamma), H(\gamma), \pi, \sigma)$ be a graph.
- The edges of γ are the elements of $E(\gamma) = \text{orb}(\sigma)$.
- The tails of γ are the elements of $T(\gamma) = \text{fix}(\sigma)$.
- The connected components of γ are the elements of $C(\gamma) = V(\gamma)/\sim$ where \sim is the smallest equivalence relation satisfying $v \sim w$ if there exists an $h \in H(\gamma)$ such that $\pi(h) = v$ and $\pi(\sigma(h)) = w$.
- The tail map of γ is the map $\iota: T(\gamma) \rightarrow C(\gamma)$ given by $\iota(h) = [\pi(h)]$.
- The path relation on γ is the relation \sim_p on $V(\gamma)$ given by $v \sim_p w$ if and only if there exists a map $f: [2n] \rightarrow H(\gamma)$ such that
 - $\{\{f(k), f(k+1)\} : 0 \leq k \leq 2n - 2\} \subseteq E(\gamma)$
 - $f(0) = v$
 - $f(2n - 1) = w$.

Definition 3. A forest is a graph $\gamma = (V(\gamma), H(\gamma), \pi, \sigma)$ such that the fibres of π are of cardinality at least three and whose path relation is irreflexive.

Definition 4. A rooted forest is a pair (γ, s) consisting of a forest γ and a section s of the tail map of γ.

Definition 5. Let Graphs be the category where
- $\text{ob}(\text{Graphs}) = \text{ar}((\text{set} \downarrow \text{set})/\approx$
- $\text{ar}(\text{Graphs})$ is the collection of all graphs
- $\text{dom}(\gamma) = [\pi_\gamma]$
- $\text{cod}(\gamma) = [\iota_\gamma]$
- 1_f is a graph (V, H, π, σ) satisfying
 - $V \approx \text{cod}(f)$
 - $H \approx \text{dom}(f)$