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1 Connection on a Vector Bundle

Let M be a smooth manifold, and let E be an Rn-vector bundle over M , with a
connection D. Let µ1, · · · , µn be local frame over an open subset U ⊂M , and regard
(µ1, · · · , µn) as row vector at each point of U , we have the Christoffel symbols of the
connection D defined as:

D ∂

∂xi
µj =: Γk

ijµk.
∗

For a section s, it can be written locally as s|U =
∑

j a
jµj = (µ1, · · · , µn)·(a1, · · · , an)t.Thus

D(ajµj) = (daj)µj + ajAµj,

where A is a connection matrix with entries 1-forms, defined as Ak
j := Γk

ijdx
i, and

Aµj = µkA
k
j . Therefore

Dµj = Γk
ijdx

i ⊗ µk = µkA
k
j .

Note that each Ak
j ∈ T ∗M |U , with Arow

column. We can then write a connection D as
D = d+ A. For s|U =

∑
j a

jµj, we have

D(ajµj) = (µ1, · · · , µn) ·
(

(da1, · · · , dan)t + A · (a1, · · · , an)t
)
,

i.e., A acts on the left on the coefficient column vector (a1, · · · , an).

2 Connection on Endomorphism Bundle

With this notation, we can verify that using the induced connection D̃ on End(E) ∼=
E ⊗ E∗ is given by D̃ = d + [A, ·], where A is the connection matrix of D. Let

∗Note that Chen defines connection matrix first, then defines Γk
ij , but I will do the converse.
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σ := σi
jµi ⊗ µj be a local section of End(E), where {µ∗

j} is the dual frame. We
compute:

D(σi
jµi ⊗ µ∗

j) = (dσi
j)µi ⊗ µ∗

j + σi
jA

k
i µk ⊗ µ∗

j + σi
jµi ⊗ ((A∗)kjµ

∗
j), (1)

where A∗ is a connection matrix of the induced connection on E∗. Note that

0 = d(µi, µ
∗
j) = (Dµi, µ

∗
j) + (µi, D

∗µ∗
j) = Aj

i + (A∗)ij,

hence A∗ = −At. Therefore (1) gives:

D(σi
jµi ⊗ µ∗

j) =
(
dσi

j + σk
jA

i
k − σi

kA
k
j

)
µi ⊗ µ∗

j

=
(
dσi

j + (A · σ)ij − (σ · A)ij
)
µi ⊗ µ∗

j

= dσ + [A, σ].

3 Curvature of Vector Bundle

We define the curvature of a connection D to be F := D ◦D : Ω(E) −→ Ω2(E). For
µ ∈ Γ(E), we have

F (µ) = (d+ A) ◦ (d+ A)(µ) = (d+ A)(dµ+ A · µ) = (dA) · µ+ (A ∧ A) · µ.

More explicitly, suppose (µ1, · · · , µn) is a local frame, and µ := ajµj as above, we
have:

F (ajµj) = (d+ A)
(

(daj)µj + Aj
ka

kµj

)
= (d ◦ daj)µj + Ak

j (daj)µk + d(Aj
ka

k)µj + Al
j ∧ A

j
ka

kµl

= Ak
j (daj)µk + (dAj

k)akµj − Aj
k ∧ (dak)µj + Al

j ∧ A
j
ka

kµl

=
(

(dAj
k)ak + (A ∧ A)jka

k
)
µj.

Thus F = dA + A ∧ A, acting on the coefficient column from the left, and on the
local frame on the right. If we write A = Aidx

i, i.e., (Ai)
k
j = Γk

ij, then

F = d(Aidx
i) + (Aidx

i) ∧ (Ajdx
j)

=
∂Ai

∂xj
dxj ∧ dxi + Ai · Ajdxi ∧ dxj

=
1

2

(
∂Aj

∂xi
− ∂Aj

∂xi
+ [Ai, Aj]

)
dxi ∧ dxj.
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Notice that F is defined locally, but it turns out to be a global object. F can be
regarded as a section of Ω2(End(E)), that is F is a endomorphism bundle-valued 2-
form, or from another perspective, a matrix with entries 2-forms. From section 2, we
have an induced connection D̃ on the endomorphism bundle, hence we can compute
D̃F as follows:

D̃F = dF + [A,F ]

= d(A ∧ A) + [A, dA+ A ∧ A]

= 0.

That is, D̃F = 0, i.e., dF = [F,A]. This is called the (second) Bianchi identity.
We now want to express F in terms of the Christoffel symbols. We first define the

curvature operator R considered as an element of Ω2(End(E)) as follows:

F : Ω(E) −→ Ω2(E), µ 7→ R(·, ·)µ,

and we define R(∂i, ∂j)µl =: Rk
lijµk. Thus Rk

lij acts on µk from the right. We have:

R(·, ·)µl = Fµl =
1

2

(
∂Γk

jl

∂xi
− Γk

il

∂xj
+ Γk

imΓm
jl − Γk

jmΓm
il

)
dxi ∧ dxj ⊗ µk.

Therefore

Rk
lij =

∂Γk
jl

∂xi
− Γk

il

∂xj
+ Γk

imΓm
jl − Γk

jmΓm
il .

An important property that the curvature operator R satisfies is that

R(X, Y )µ = [DX , DY ]µ−D[X,Y ]µ,

for all vector fields X, Y , and all section µ ∈ Γ(E).

4 Tangent Bundle Case

We now restrict our discussion to (M, g) a Riemannian manifold, and E =TM is the
tangent bundle, and D is the Levi-Civita connection ∇ on TM . Taking { ∂

∂xi} to be
our local frame, we have

R(∂i, ∂j)∂l = Rk
lij∂k.

Using the Riemannian metric, we can define a new curvature tensor Rklij := gkmR
m
lij.

Then it is easy to see
Rklij = 〈R(∂i, ∂j)∂l, ∂k〉.
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The second Bianchi identity in the tangent bundle case is

Rklij,h +Rlhij,k +Rhkij,l = 0, ∀k, l, i, j, h.

It is easy to verify Riem := Rklijdx
i ⊗ dxj ⊗ dxl ⊗ dxk is a tensor field of type (0, 4)

on M , called the Riemannian curvature tensor with respect to the metric g. We now
define the associated intrinsic curvatures on (M, g).

1. The sectional curvature of the plane spanned by the linearly independent tangent
vectors X = ai∂i|p, Y = bj∂j|p ∈ TpM is

K(X ∧ Y ) :=
〈R(X, Y )Y,X〉
|X ∧ Y |2

=
〈R(ai∂i, b

j∂j)b
k∂k, a

l∂l〉
gikgjl(aiakbjbl − aiajbkbl)

=
Rlkija

ibjalbk

gikgjl(aiakbjbl − aiajbkbl)

=
Rijkla

ibjakbl

(gikgjl − gijgkl)aibjakbl
,

where |X ∧ Y |2 := 〈X,X〉 · 〈Y, Y 〉 − 〈X, Y 〉2.

2. The Ricci curvature in the direction X =
∑

i a
i|p ∈ TpM is defined as

Ric(X,X) := gjl〈R(X, ∂j)∂l, X〉
= gjl〈R(ai∂i, ∂j)∂l, a

k∂k〉
= aiakgjlRklij

Hence Ric(∂i, ∂i) = gjlRilij. The Ricci tensor is Ricik := R(∂i, ∂k) = gjlRklij =
gjlRijkl. That is the Ricci tensor is Ric = Rikdx

i⊗dxj, which is of type (0, 2), while
the Ricci curvature in a certain direction or along a vector field is a number at each
point, hence is a smooth function on the manifold. We have Ricki = gjlRkjil =
gjlRilkj = gljRilkj = Rik. Thus the Ricci tensor is a symmetric 2-tensor.

3. The scalar curvature is R := gikRicik. Thus the Ricci curvature in the direction
X is the average of the sectional curvature of all planes in TpM containing X, and
the scalar curvature is the average of the Ricci curvature of all unit vectors, i.e.,
of the sectional curvature of all planes in TpM .
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