My Curvature Conventions

Hangjun Xu

September 2011

1 Connection on a Vector Bundle

Let M be a smooth manifold, and let E be an \mathbb{R}^{n}-vector bundle over M, with a connection D. Let μ_{1}, \cdots, μ_{n} be local frame over an open subset $U \subset M$, and regard $\left(\mu_{1}, \cdots, \mu_{n}\right)$ as row vector at each point of U, we have the Christoffel symbols of the connection D defined as:

$$
D_{\frac{\partial}{\partial x^{i}}} \mu_{j}=: \Gamma_{i j}^{k} \mu_{k} \dot{U}^{*}
$$

For a section s, it can be written locally as $\left.s\right|_{U}=\sum_{j} a^{j} \mu_{j}=\left(\mu_{1}, \cdots, \mu_{n}\right) \cdot\left(a^{1}, \cdots, a^{n}\right)^{t}$.Thus

$$
D\left(a^{j} \mu_{j}\right)=\left(d a^{j}\right) \mu_{j}+a^{j} A \mu_{j},
$$

where A is a connection matrix with entries 1 -forms, defined as $A_{j}^{k}:=\Gamma_{i j}^{k} d x^{i}$, and $A \mu_{j}=\mu_{k} A_{j}^{k}$. Therefore

$$
D \mu_{j}=\Gamma_{i j}^{k} d x^{i} \otimes \mu_{k}=\mu_{k} A_{j}^{k} .
$$

Note that each $\left.A_{j}^{k} \in T^{*} M\right|_{U}$, with $A_{\text {column }}^{\text {row }}$. We can then write a connection D as $D=d+A$. For $\left.s\right|_{U}=\sum_{j} a^{j} \mu_{j}$, we have

$$
D\left(a^{j} \mu_{j}\right)=\left(\mu_{1}, \cdots, \mu_{n}\right) \cdot\left(\left(d a^{1}, \cdots, d a^{n}\right)^{t}+A \cdot\left(a^{1}, \cdots, a^{n}\right)^{t}\right)
$$

i.e., A acts on the left on the coefficient column vector $\left(a^{1}, \cdots, a^{n}\right)$.

2 Connection on Endomorphism Bundle

With this notation, we can verify that using the induced connection \widetilde{D} on $\operatorname{End}(E) \cong$ $E \otimes E^{*}$ is given by $\widetilde{D}=d+[A, \cdot]$, where A is the connection matrix of D. Let

[^0]$\sigma:=\sigma_{j}^{i} \mu_{i} \otimes \mu_{j}$ be a local section of $\operatorname{End}(E)$, where $\left\{\mu_{j}^{*}\right\}$ is the dual frame. We compute:
\[

$$
\begin{equation*}
D\left(\sigma_{j}^{i} \mu_{i} \otimes \mu_{j}^{*}\right)=\left(d \sigma_{j}^{i}\right) \mu_{i} \otimes \mu_{j}^{*}+\sigma_{j}^{i} A_{i}^{k} \mu_{k} \otimes \mu_{j}^{*}+\sigma_{j}^{i} \mu_{i} \otimes\left(\left(A^{*}\right)_{j}^{k} \mu_{j}^{*}\right), \tag{1}
\end{equation*}
$$

\]

where A^{*} is a connection matrix of the induced connection on E^{*}. Note that

$$
0=d\left(\mu_{i}, \mu_{j}^{*}\right)=\left(D \mu_{i}, \mu_{j}^{*}\right)+\left(\mu_{i}, D^{*} \mu_{j}^{*}\right)=A_{i}^{j}+\left(A^{*}\right)_{j}^{i},
$$

hence $A^{*}=-A^{t}$. Therefore (1) gives:

$$
\begin{aligned}
D\left(\sigma_{j}^{i} \mu_{i} \otimes \mu_{j}^{*}\right) & =\left(d \sigma_{j}^{i}+\sigma_{j}^{k} A_{k}^{i}-\sigma_{k}^{i} A_{j}^{k}\right) \mu_{i} \otimes \mu_{j}^{*} \\
& =\left(d \sigma_{j}^{i}+(A \cdot \sigma)_{j}^{i}-(\sigma \cdot A)_{j}^{i}\right) \mu_{i} \otimes \mu_{j}^{*} \\
& =d \sigma+[A, \sigma] .
\end{aligned}
$$

3 Curvature of Vector Bundle

We define the curvature of a connection D to be $F:=D \circ D: \Omega(E) \longrightarrow \Omega^{2}(E)$. For $\mu \in \Gamma(E)$, we have

$$
F(\mu)=(d+A) \circ(d+A)(\mu)=(d+A)(d \mu+A \cdot \mu)=(d A) \cdot \mu+(A \wedge A) \cdot \mu
$$

More explicitly, suppose $\left(\mu_{1}, \cdots, \mu_{n}\right)$ is a local frame, and $\mu:=a^{j} \mu_{j}$ as above, we have:

$$
\begin{aligned}
F\left(a^{j} \mu_{j}\right) & =(d+A)\left(\left(d a^{j}\right) \mu_{j}+A_{k}^{j} a^{k} \mu_{j}\right) \\
& =\left(d \circ d a^{j}\right) \mu_{j}+A_{j}^{k}\left(d a^{j}\right) \mu_{k}+d\left(A_{k}^{j} a^{k}\right) \mu_{j}+A_{j}^{l} \wedge A_{k}^{j} a^{k} \mu_{l} \\
& =A_{j}^{k}\left(d a^{j}\right) \mu_{k}+\left(d A_{k}^{j}\right) a^{k} \mu_{j}-A_{k}^{j} \wedge\left(d a^{k}\right) \mu_{j}+A_{j}^{l} \wedge A_{k}^{j} a^{k} \mu_{l} \\
& =\left(\left(d A_{k}^{j}\right) a^{k}+(A \wedge A)_{k}^{j} a^{k}\right) \mu_{j} .
\end{aligned}
$$

Thus $F=d A+A \wedge A$, acting on the coefficient column from the left, and on the local frame on the right. If we write $A=A_{i} d x^{i}$, i.e., $\left(A_{i}\right)_{j}^{k}=\Gamma_{i j}^{k}$, then

$$
\begin{aligned}
F & =d\left(A_{i} d x^{i}\right)+\left(A_{i} d x^{i}\right) \wedge\left(A_{j} d x^{j}\right) \\
& =\frac{\partial A_{i}}{\partial x^{j}} d x^{j} \wedge d x^{i}+A_{i} \cdot A_{j} d x_{i} \wedge d x^{j} \\
& =\frac{1}{2}\left(\frac{\partial A_{j}}{\partial x^{i}}-\frac{\partial A_{j}}{\partial x^{i}}+\left[A_{i}, A_{j}\right]\right) d x^{i} \wedge d x^{j}
\end{aligned}
$$

Notice that F is defined locally, but it turns out to be a global object. F can be regarded as a section of $\Omega^{2}(\operatorname{End}(E))$, that is F is a endomorphism bundle-valued 2form, or from another perspective, a matrix with entries 2 -forms. From section 2, we have an induced connection \widetilde{D} on the endomorphism bundle, hence we can compute $\widetilde{D} F$ as follows:

$$
\begin{aligned}
\widetilde{D} F & =d F+[A, F] \\
& =d(A \wedge A)+[A, d A+A \wedge A] \\
& =0 .
\end{aligned}
$$

That is, $\widetilde{D} F=0$, i.e., $d F=[F, A]$. This is called the (second) Bianchi identity.
We now want to express F in terms of the Christoffel symbols. We first define the curvature operator R considered as an element of $\Omega^{2}(\operatorname{End}(E))$ as follows:

$$
F: \Omega(E) \longrightarrow \Omega^{2}(E), \quad \mu \mapsto R(\cdot, \cdot) \mu,
$$

and we define $R\left(\partial_{i}, \partial_{j}\right) \mu_{l}=: R_{l i j}^{k} \mu_{k}$. Thus $R_{l i j}^{k}$ acts on μ_{k} from the right. We have:

$$
R(\cdot, \cdot) \mu_{l}=F \mu_{l}=\frac{1}{2}\left(\frac{\partial \Gamma_{j l}^{k}}{\partial x^{i}}-\frac{\Gamma_{i l}^{k}}{\partial x^{j}}+\Gamma_{i m}^{k} \Gamma_{j l}^{m}-\Gamma_{j m}^{k} \Gamma_{i l}^{m}\right) d x^{i} \wedge d x^{j} \otimes \mu_{k} .
$$

Therefore

$$
R_{l i j}^{k}=\frac{\partial \Gamma_{j l}^{k}}{\partial x^{i}}-\frac{\Gamma_{i l}^{k}}{\partial x^{j}}+\Gamma_{i m}^{k} \Gamma_{j l}^{m}-\Gamma_{j m}^{k} \Gamma_{i l}^{m} .
$$

An important property that the curvature operator R satisfies is that

$$
R(X, Y) \mu=\left[D_{X}, D_{Y}\right] \mu-D_{[X, Y]} \mu,
$$

for all vector fields X, Y, and all section $\mu \in \Gamma(E)$.

4 Tangent Bundle Case

We now restrict our discussion to (M, g) a Riemannian manifold, and $\mathrm{E}=T M$ is the tangent bundle, and D is the Levi-Civita connection ∇ on $T M$. Taking $\left\{\frac{\partial}{\partial x^{i}}\right\}$ to be our local frame, we have

$$
R\left(\partial_{i}, \partial_{j}\right) \partial_{l}=R_{l i j}^{k} \partial_{k} .
$$

Using the Riemannian metric, we can define a new curvature tensor $R_{k l i j}:=g_{k m} R_{l i j}^{m}$. Then it is easy to see

$$
R_{k l i j}=\left\langle R\left(\partial_{i}, \partial_{j}\right) \partial_{l}, \partial_{k}\right\rangle
$$

The second Bianchi identity in the tangent bundle case is

$$
R_{k l i j, h}+R_{l h i j, k}+R_{h k i j, l}=0, \quad \forall k, l, i, j, h .
$$

It is easy to verify Riem $:=R_{k l i j} d x^{i} \otimes d x^{j} \otimes d x^{l} \otimes d x^{k}$ is a tensor field of type $(0,4)$ on M, called the Riemannian curvature tensor with respect to the metric g. We now define the associated intrinsic curvatures on (M, g).

1. The sectional curvature of the plane spanned by the linearly independent tangent vectors $X=\left.a^{i} \partial_{i}\right|_{p}, Y=\left.b^{j} \partial_{j}\right|_{p} \in T_{p} M$ is

$$
\begin{aligned}
K(X \wedge Y) & :=\frac{\langle R(X, Y) Y, X\rangle}{|X \wedge Y|^{2}} \\
& =\frac{\left\langle R\left(a^{i} \partial_{i}, b^{j} \partial_{j}\right) b^{k} \partial_{k}, a^{l} \partial_{l}\right\rangle}{g_{i k} g_{j l}\left(a^{i} a^{k} b^{j} b^{l}-a^{i} a^{j} b^{k} b^{l}\right)} \\
& =\frac{R_{l k i j} a^{i} b^{j} a^{l} b^{k}}{g_{i k} g_{j l}\left(a^{i} a^{k} b^{j} b^{l}-a^{i} a^{j} b^{k} b^{l}\right)} \\
& =\frac{R_{i j k l} a^{i} b^{j} a^{k} b^{l}}{\left(g_{i k} g_{j l}-g_{i j} g_{k l}\right) a^{i} b^{j} a^{k} b^{l}},
\end{aligned}
$$

where $|X \wedge Y|^{2}:=\langle X, X\rangle \cdot\langle Y, Y\rangle-\langle X, Y\rangle^{2}$.
2. The Ricci curvature in the direction $X=\left.\sum_{i} a^{i}\right|_{p} \in T_{p} M$ is defined as

$$
\begin{aligned}
\operatorname{Ric}(X, X) & :=g^{j l}\left\langle R\left(X, \partial_{j}\right) \partial_{l}, X\right\rangle \\
& =g^{j l}\left\langle R\left(a^{i} \partial_{i}, \partial_{j}\right) \partial_{l}, a^{k} \partial_{k}\right\rangle \\
& =a^{i} a^{k} g^{j l} R_{k l i j}
\end{aligned}
$$

Hence $\operatorname{Ric}\left(\partial_{i}, \partial_{i}\right)=g^{j l} R_{i l i j}$. The Ricci tensor is $\operatorname{Ric}_{i k}:=R\left(\partial_{i}, \partial_{k}\right)=g^{j l} R_{k l i j}=$ $g^{j l} R_{i j k l}$. That is the Ricci tensor is Ric $=R_{i k} d x^{i} \otimes d x^{j}$, which is of type (0,2), while the Ricci curvature in a certain direction or along a vector field is a number at each point, hence is a smooth function on the manifold. We have $\operatorname{Ric}_{k i}=g^{j l} R_{k j i l}=$ $g^{j l} R_{i l k j}=g^{l j} R_{i l k j}=R_{i k}$. Thus the Ricci tensor is a symmetric 2-tensor.
3. The scalar curvature is $R:=g^{i k} \operatorname{Ric}_{i k}$. Thus the Ricci curvature in the direction X is the average of the sectional curvature of all planes in $T_{p} M$ containing X, and the scalar curvature is the average of the Ricci curvature of all unit vectors, i.e., of the sectional curvature of all planes in $T_{p} M$.

[^0]: *Note that Chen defines connection matrix first, then defines $\Gamma_{i j}^{k}$, but I will do the converse.

