Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke





.......................

.......................


Publications [#264877] of Guillermo Sapiro

Papers Published

  1. Caselles, V; Kimmel, R; Sapiro, G, Geodesic active contours, IEEE International Conference on Computer Vision (1995), pp. 694-699
    (last updated on 2017/12/16)

    Abstract:
    A novel scheme for the detection of object boundaries is presented. The technique is based on active contours deforming according to intrinsic geometric measures of the image. The evolving contours naturally split and merge, allowing the simultaneous detection of several objects and both interior and exterior boundaries. The proposed approach is based on the relation between active contours and the computation of geodesics or minimal distance curves. The minimal distance curve lays in a Riemannian space whose metric is defined by the image content. This geodesic approach for object segmentation allows to connect classical 'snakes' based on energy minimization and geometric active contours based on the theory of curve evolution. Previous models of geometric active contours are improved as showed by a number of examples. Formal results concerning existence, uniqueness, stability, and correctness of the evolution are presented as well.

 

dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320