Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#265118] of Guillermo Sapiro

Papers Published

  1. Duchin, Y; Abosch, A; Yacoub, E; Sapiro, G; Harel, N, Feasibility of using ultra-high field (7 T) MRI for clinical surgical targeting., PloS one, vol. 7 no. 5 (2012), pp. e37328 [22615980], [doi]
    (last updated on 2017/12/13)

    The advantages of ultra-high magnetic field (7 Tesla) MRI for basic science research and neuroscience applications have proven invaluable. Structural and functional MR images of the human brain acquired at 7 T exhibit rich information content with potential utility for clinical applications. However, (1) substantial increases in susceptibility artifacts, and (2) geometrical distortions at 7 T would be detrimental for stereotactic surgeries such as deep brain stimulation (DBS), which typically use 1.5 T images for surgical planning. Here, we explore whether these issues can be addressed, making feasible the use of 7 T MRI to guide surgical planning. Twelve patients with Parkinson's disease, candidates for DBS, were scanned on a standard clinical 1.5 T MRI and a 7 T MRI scanner. Qualitative and quantitative assessments of global and regional distortion were evaluated based on anatomical landmarks and transformation matrix values. Our analyses show that distances between identical landmarks on 1.5 T vs. 7 T, in the mid-brain region, were less than one voxel, indicating a successful co-registration between the 1.5 T and 7 T images under these specific imaging parameter sets. On regional analysis, the central part of the brain showed minimal distortion, while inferior and frontal areas exhibited larger distortion due to proximity to air-filled cavities. We conclude that 7 T MR images of the central brain regions have comparable distortions to that observed on a 1.5 T MRI, and that clinical applications targeting structures such as the STN, are feasible with information-rich 7 T imaging.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320