Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#328827] of Hau-Tieng Wu

Papers Published

  1. Lederman, RR; Talmon, R; Wu, HT; Lo, YL; Coifman, RR, Alternating diffusion for common manifold learning with application to sleep stage assessment, IEEE International Conference on Acoustics Speech and Signal Processing, vol. 2015-August (January, 2015), pp. 5758-5762, ISBN 9781467369978 [doi]
    (last updated on 2018/03/18)

    © 2015 IEEE. In this paper, we address the problem of multimodal signal processing and present a manifold learning method to extract the common source of variability from multiple measurements. This method is based on alternating-diffusion and is particularly adapted to time series. We show that the common source of variability is extracted from multiple sensors as if it were the only source of variability, extracted by a standard manifold learning method from a single sensor, without the influence of the sensor-specific variables. In addition, we present application to sleep stage assessment. We demonstrate that, indeed, through alternating-diffusion, the sleep information hidden inside multimodal respiratory signals can be better captured compared to single-modal methods.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320