Math @ Duke

Publications [#287190] of Ingrid Daubechies
Papers Published
 Lipman, Y; Chen, X; Daubechies, I; Funkhouser, T, Symmetry Factored Embedding and distance,
ACM Transactions on Graphics, vol. 29 no. 4
(2010), ISSN 07300301 [doi]
(last updated on 2018/06/24)
Abstract: We introduce the Symmetry Factored Embedding (SFE) and the Symmetry Factored Distance (SFD) as new tools to analyze and represent symmetries in a point set. The SFE provides new coordinates in which symmetry is "factored out," and the SFD is the Euclidean distance in that space. These constructions characterize the space of symmetric correspondences between points  i.e., orbits. A key observation is that a set of points in the same orbit appears as a clique in a correspondence graph induced by pairwise similarities. As a result, the problem of finding approximate and partial symmetries in a point set reduces to the problem of measuring connectedness in the correspondence graph, a wellstudied problem for which spectral methods provide a robust solution. We provide methods for computing the SFE and SFD for extrinsic global symmetries and then extend them to consider partial extrinsic and intrinsic cases. During experiments with difficult examples, we find that the proposed methods can characterize symmetries in inputs with noise, missing data, nonrigid deformations, and complex symmetries, without a priori knowledge of the symmetry group. As such, we believe that it provides a useful tool for automatic shape analysis in applications such as segmentation and stationary point detection. © 2010 ACM.


dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821
 
Mathematics Department
Duke University, Box 90320
Durham, NC 277080320

