Math @ Duke

Publications [#243585] of John Harer
Papers Published
 Edelsbrunner, H; Harer, J, The persistent Morse complex segmentation of a 3manifold,
in 3D Physiological Human Workshop, 2009, Lecture Notes Comp. Sci., edited by N. MagnenatThalmann,
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5903 LNCS
(2009),
pp. 3650, SpringerVerlag, Berlin, ISSN 03029743 [doi]
(last updated on 2018/10/23)
Abstract: We describe an algorithm for segmenting threedimensional medical imaging data modeled as a continuous function on a 3manifold. It is related to watershed algorithms developed in image processing but is closer to its mathematical roots, which are Morse theory and homological algebra. It allows for the implicit treatment of an underlying mesh, thus combining the structural integrity of its mathematical foundations with the computational efficiency of image processing. © SpringerVerlag Berlin Heidelberg 2009.


dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821
 
Mathematics Department
Duke University, Box 90320
Durham, NC 277080320

