Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke





.......................

.......................


Publications [#303545] of John Harer

Papers Published

  1. Turner, K; Mileyko, Y; Mukherjee, S; Harer, J, Fr├ęchet Means for Distributions of Persistence diagrams (June, 2012) [1206.2790v2]
    (last updated on 2017/12/14)

    Abstract:
    Given a distribution $\rho$ on persistence diagrams and observations $X_1,...X_n \stackrel{iid}{\sim} \rho$ we introduce an algorithm in this paper that estimates a Fr\'echet mean from the set of diagrams $X_1,...X_n$. If the underlying measure $\rho$ is a combination of Dirac masses $\rho = \frac{1}{m} \sum_{i=1}^m \delta_{Z_i}$ then we prove the algorithm converges to a local minimum and a law of large numbers result for a Fr\'echet mean computed by the algorithm given observations drawn iid from $\rho$. We illustrate the convergence of an empirical mean computed by the algorithm to a population mean by simulations from Gaussian random fields.

 

dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320