Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke





.......................

.......................


Publications [#320388] of Lillian B. Pierce

Papers Published

  1. Alaifari, R; Pierce, LB; Steinerberger, S, Lower bounds for the truncated Hilbert transform, arXiv:1311.6845 [math], vol. 32 no. 1 (November, 2013), pp. 23-56 [doi]
    (last updated on 2017/12/13)

    Abstract:
    Given two intervals $I, J \subset \mathbb{R}$, we ask whether it is possible to reconstruct a real-valued function $f \in L^2(I)$ from knowing its Hilbert transform $Hf$ on $J$. When neither interval is fully contained in the other, this problem has a unique answer (the nullspace is trivial) but is severely ill-posed. We isolate the difficulty and show that by restricting $f$ to functions with controlled total variation, reconstruction becomes stable. In particular, for functions $f \in H^1(I)$, we show that $$ \|Hf\|_{L^2(J)} \geq c_1 \exp{\left(-c_2 \frac{\|f_x\|_{L^2(I)}}{\|f\|_{L^2(I)}}\right)} \| f \|_{L^2(I)} ,$$ for some constants $c_1, c_2 > 0$ depending only on $I, J$. This inequality is sharp, but we conjecture that $\|f_x\|_{L^2(I)}$ can be replaced by $\|f_x\|_{L^1(I)}$.

 

dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320