Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#235925] of Robert Calderbank

Papers Published

  1. Howard, SD; Sirianunpiboon, S; Calderbank, AR, Low complexity essentially maximum likelihood decoding of perfect space-time block codes, IEEE International Conference on Acoustics Speech and Signal Processing (2009), pp. 2725-2728, ISSN 1520-6149 [doi]
    (last updated on 2017/12/16)

    Perfect space-time block codes (STBCs) were first introduced by Oggier et al. to have full rate, full diversity and non-vanishing determinant. A maximum likelihood decoder based on the sphere decoder has been used for efficient decoding of perfect STBCs. However the worst-case complexity for the sphere decoder is an exhaustive search. In this paper we present a reduced complexity algorithm for 3 x 3 perfect STBC which gives essentially maximum likelihood (ML) performance and which can be extended to other perfect STBC. The algorithm is based on the conditional maximization of the likelihood function with respect to one of the set of signal points given another. There are a number of choices for which signal points to condition on and the underlying structure of the code guarantees that one of the choices is good with high probability. Furthermore, the approach can be integrated with the sphere decoding algorithm with worst case complexity corresponding exactly to that of our algorithm. ©2009 Australian Crown Copyright.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320