Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke





.......................

.......................


Publications [#235964] of Robert Calderbank

Papers Published

  1. Calderbank, R; Jafarpour, S, Reed Muller sensing matrices and the LASSO (Invited paper), Lecture notes in computer science, vol. 6338 LNCS (2010), pp. 442-463, ISSN 0302-9743 [doi]
    (last updated on 2017/12/15)

    Abstract:
    We construct two families of deterministic sensing matrices where the columns are obtained by exponentiating codewords in the quaternary Delsarte-Goethals code DG(m,r). This method of construction results in sensing matrices with low coherence and spectral norm. The first family, which we call Delsarte-Goethals frames, are 2m - dimensional tight frames with redundancy 2rm . The second family, which we call Delsarte-Goethals sieves, are obtained by subsampling the column vectors in a Delsarte-Goethals frame. Different rows of a Delsarte-Goethals sieve may not be orthogonal, and we present an effective algorithm for identifying all pairs of non-orthogonal rows. The pairs turn out to be duplicate measurements and eliminating them leads to a tight frame. Experimental results suggest that all DG(m,r) sieves with m ≤ 15 and r ≥ 2 are tight-frames; there are no duplicate rows. For both families of sensing matrices, we measure accuracy of reconstruction (statistical 0 - 1 loss) and complexity (average reconstruction time) as a function of the sparsity level k. Our results show that DG frames and sieves outperform random Gaussian matrices in terms of noiseless and noisy signal recovery using the LASSO. © 2010 Springer-Verlag.

 

dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320