Department of Mathematics
 Search | Help | Login | printable version

Math @ Duke





.......................

.......................


Publications [#373056] of Cynthia D. Rudin

Papers Published

  1. McDonald, SM; Augustine, EK; Lanners, Q; Rudin, C; Catherine Brinson, L; Becker, ML, Applied machine learning as a driver for polymeric biomaterials design., Nature communications, vol. 14 no. 1 (August, 2023), pp. 4838 [doi]
    (last updated on 2024/11/20)

    Abstract:
    Polymers are ubiquitous to almost every aspect of modern society and their use in medical products is similarly pervasive. Despite this, the diversity in commercial polymers used in medicine is stunningly low. Considerable time and resources have been extended over the years towards the development of new polymeric biomaterials which address unmet needs left by the current generation of medical-grade polymers. Machine learning (ML) presents an unprecedented opportunity in this field to bypass the need for trial-and-error synthesis, thus reducing the time and resources invested into new discoveries critical for advancing medical treatments. Current efforts pioneering applied ML in polymer design have employed combinatorial and high throughput experimental design to address data availability concerns. However, the lack of available and standardized characterization of parameters relevant to medicine, including degradation time and biocompatibility, represents a nearly insurmountable obstacle to ML-aided design of biomaterials. Herein, we identify a gap at the intersection of applied ML and biomedical polymer design, highlight current works at this junction more broadly and provide an outlook on challenges and future directions.

 

dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320