Math @ Duke

Publications [#226041] of Stephanos Venakides
Preprints
 Stavros Komineas, Stephen P. Shipman, Stephanos Venakides, Lossless Polariton Solitons,
arXiv
(2014) [arXiv:1409.4067]
(last updated on 2015/01/28)
Abstract: Photons and excitons in a semiconductor microcavity interact to form excitonpolariton condensates. These are governed by a nonlinear quantummechanical system involving exciton and photon wavefunctions. We calculate all nontraveling harmonic soliton solutions for the onedimensional lossless system. There are two frequency bands of bright solitons when the interexciton interactions produce a repulsive nonlinearity and two frequency bands of dark solitons when the nonlinearity is attractive. In addition, there are two frequency bands for which the exciton wavefunction is discontinuous at its symmetry point, where it undergoes a phase jump of π. A band of continuous dark solitons merges with a band of discontinuous dark solitons, forming a larger band over which the soliton farfield amplitude varies from 0 to ∞; the discontinuity is initiated when the operating frequency exceeds the free exciton frequency. The far fields of the solitons in the lowest and highest frequency bands (one discontinuous and one continuous dark) are linearly unstable, whereas the other four bands have linearly stable far fields, including the merged band of dark solitons.


dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821
 
Mathematics Department
Duke University, Box 90320
Durham, NC 277080320

