Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#293132] of Thomas P. Witelski


Papers Published

  1. Dijksman, JA; Mukhopadhyay, S; Gaebler, C; Witelski, TP; Behringer, RP, Obtaining self-similar scalings in focusing flows., Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, vol. 92 no. 4 (2015), pp. 043016, ISSN 1539-3755 [doi]
    (last updated on 2018/11/21)

    The surface structure of converging thin fluid films displays self-similar behavior, as was shown in the work by Diez et al. [Q. Appl. Math. 210, 155 (1990)]. Extracting the related similarity scaling exponents from either numerical or experimental data is nontrivial. Here we provide two such methods. We apply them to experimental and numerical data on converging fluid films driven by both surface tension and gravitational forcing. In the limit of pure gravitational driving, we recover Diez' semianalytic result, but our methods also allow us to explore the entire regime of mixed capillary and gravitational driving, up to entirely surface-tension-driven flows. We find scaling forms of smoothly varying exponents up to surprisingly small Bond numbers. Our experimental results are in reasonable agreement with our numerical simulations, which confirm theoretically obtained relations between the scaling exponents.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320