Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#304499] of Thomas P. Witelski


Papers Published

  1. Shearer, M; Schaeffer, DG; Witelski, TP, Stability of shear bands in an elastoplastic model for granular flow: The role of discreteness, Mathematical Models and Methods in Applied Sciences, vol. 13 no. 11 (2003), pp. 1629-1671 [doi]
    (last updated on 2018/11/17)

    Continuum models for granular flow generally give rise to systems of nonlinear partial differential equations that are linearly ill-posed. In this paper we introduce discreteness into an elastoplasticity model for granular flow by approximating spatial derivatives with finite differences. The resulting ordinary differential equations have bounded solutions for all time, a consequence of both discreteness and nonlinearity. We study how the large-time behavior of solutions in this model depends on an elastic shear modulus ε. For large and moderate values of ε, the model has stable steady-state solutions with uniform shearing except for one shear band; almost all solutions tend to one of these as t → ∞. However, when ε becomes sufficiently small, the single-shear-band solutions lose stability through a Hopf bifurcation. The value of ε at the bifurcation point is proportional to the ratio of the mesh size to the macroscopic length scale. These conclusions are established analytically through a careful estimation of the eigenvalues. In numerical simulations we find that: (i) after stability is lost, time-periodic solutions appear, containing both elastic and plastic waves, and (ii) the bifurcation diagram representing these solutions exhibits bi-stability.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320