Psychology and Neuroscience Graduate Students Database
Psychology and Neuroscience
Arts & Sciences
Duke University

 HOME > Arts & Sciences > pn > Graduate Students    Search Help Login pdf version printable version 

Publications [#350006] of Matthew Bachman

search PubMed.

Journal Articles

  1. Bachman, MD; Wang, L; Gamble, ML; Woldorff, MG (2020). Physical Salience and Value-Driven Salience Operate through Different Neural Mechanisms to Enhance Attentional Selection.. Journal of Neuroscience, 40(28), 5455-5464. [doi]
    (last updated on 2022/05/18)

    Previous studies have indicated that both increased physical salience and increased reward-value salience of a target improve behavioral measures of attentional selection. It is unclear, however, whether these two forms of salience interact with attentional networks through similar or different neural mechanisms, and what such differences might be. We examined this question by separately manipulating both the value-driven and physical salience of targets in a visual search task while recording response times (RTs) and event-related potentials, focusing on the attentional-orienting-sensitive N2pc event-related potential component. Human participants of both sexes searched arrays for targets of either a high-physical-salience color or one of two low-physical-salience colors across three experimental phases. The first phase ("baseline") offered no rewards. RT and N2pc latencies were shorter for high-physical-salience targets, indicating faster attentional orienting. In the second phase ("equal-reward"), a low monetary reward was given for fast correct responses for all target types. This reward context improved overall performance, similarly shortening RTs and enhancing N2pc amplitudes for all target types, but with no change in N2pc latencies. In the third phase ("selective-reward"), the reward rate was made selectively higher for one of the two low-physical-salience colors, resulting in their RTs becoming as fast as the high-physical-salience targets. Despite the equally fast RTs, the N2pc's for these low-physical-salience, high-value targets remained later than for high-physical-salience targets, instead eliciting significantly larger N2pc's. These results suggest that enhanced physical salience leads to faster attentional orienting, but value-driven salience to stronger attentional orienting, underscoring the utilization of different underlying mechanisms.SIGNIFICANCE STATEMENT Associating relevant target stimuli with reward value can enhance their salience, facilitating their attentional selection. This value-driven salience improves behavioral performance, similar to the effects of physical salience. Recent theories, however, suggest that these forms of salience are intrinsically different, although the neural mechanisms underlying any such differences remain unclear. This study addressed this issue by manipulating the physical and value-related salience of targets in a visual search task, comparing their effects on several attention-sensitive neural-activity measures. Our findings show that, whereas physical salience accelerates the speed of attentional selection, value-driven salience selectively enhances its strength. These findings shed new insights into the theoretical and neural underpinnings of value-driven salience and its effects on attention and behavior.

Duke University * Arts & Sciences * Faculty * Staff * Grad * Postdocs * Reload * Login